

Use Git and GitHub
Set up Git on your Mac
Git/GitHub Glossary and Illustrated Reference
Enable a virtual machine
Create a repository clone on your local machine
Daily update and rebase the master branch on your local repository
Create and checkout a new feature branch
Checkout an existing feature branch
Verify your work with the make docs command

1.
2.
3.

4.
5.

6.

How to check your work after a make docs
Add a new file or folder to Git tracking
Push changes to a fork
Rebase, squash, and push to your fork
Fixing merge conflicts while rebasing
Create a pull request
Participate a pull request review
Test or carry another user's code branch
Understand when and how to merge a pull request
Backing out changes you already pushed to GitHub
How to cherry-pick a commit for release
Git Going Cheesheet
FAQ about writers and Git
Troubleshooting Git

Correct a Permission Denied (publickey) error
Correct a TLS-enabled daemon error

Checkout a remote branch from GitHub

Set up Git on your Mac

When to do this: Once, to get Git set up and
configured on your Mac.

Mac comes with Apple's Git
version. This sucks. Get the
real Git.

Prerequisites: A Mac.

Create a GitHub account.
Install Git correctly.
Install XCode on your Mac.

Generate an SSH key and add it to GitHub ad it to both your GitHub profile and the .ssh-agent
Change to your /tmp directory.

$ cd /tmp

We all use a profile which originates from Jessie Frazelle one of Docker's top developers. This profile includes some cool prompt
helpers for git.

We recommend you get this profile.

Clone the profile set from moxiegirl.

We used to do these in reverse order, but installing Git first prevents you from having to clobber the potentially-bad version
of Git that ships bundled with XCode.)

https://help.github.com/articles/generating-ssh-keys/
https://git-scm.com/downloads

6.

7.

8.

9.

$ git clone git@github.com:moxiegirl/my_profile.git

Change into the directory.my_profile

$ cd my_profile

Copy the profile files to yours.
 This will overwrite any existing profile files you have.

$ cp .* ~/

Close any open terminals and reopen them.

Git/GitHub Glossary and Illustrated Reference
You need this if you are new to Git or just for refresher.

Glossary

Term Description

clone A clone is a copy of a repository that lives on your computer instead of in GitHub.n.
v. The act of copying a repository with the Git command.clone

With your clone you can edit the files in your preferred editor and use Git to keep track of your changes without having to be
online. It is, however, connected to the remote version so that changes can be synced between the two. You can push your
local changes to the remote to keep them synced when you're online.

https://help.github.com/articles/github-glossary/#remote

branch A branch is a version of a repository code. It does not affect the primary or master branch allowing you to work freely
without disrupting the "live" version. When you've made the changes you want to make, you can merge your branch back
into the master branch to publish your changes. Also, for managing branches.a Git command

checkout

commit ., A commit, or "revision", is an individual change to a file (or set of files). n A that saves a change in aGit command
repository

It's like when you save a file, except with Git, every time you save it creates a unique ID (a.k.a. the "SHA" or "hash") that
allows you to keep record of what changes were made when and by who. Commits usually contain a commit message which
is a brief description of what changes were made.

diff n., The difference in changes between two commits. Also, that shows changes between commits, commita Git command
and working tree, etc

fetch A git command to get the latest changes from an online repository (like) without merging them in. Once theseGitHub.com
changes are fetched you can compare them to your branches in your local clone and merge these changes.

fork A fork is a personal copy of another user's repository that lives on your GitHub account. Forks allow you to freely make
changes to a project without affecting the original. Forks remain attached to the original, allowing you to submit a pull request
to the original's author to update with your changes. You can also keep your fork up to date by pulling in updates from the
original.

Git Git is an open source program for tracking changes in text files. It was written by the author of the Linux operating system.

GitHub A social coding cloud application is built on top of Git.

hash See SHA or commit.

HEAD A reference to the currently checked out commit. In normal states, it's actually a symbolic reference to the branch you have
checked out - if you look at the contents of .git HEAD/ you'll see something like " ". The branchref: refs/heads/master
itself is a reference to the commit at the tip of the branch

LGTM Looks Good to Me – a short hand way for a pull request reviewer to indicate approval of a change. Documentation changes
require the approval of two doc maintainers in addition to technical reviewers.

master The main branch. Analogous to Subversion's trunk.

merge A Git command that takes the changes from one branch (in the same repository or from a fork), and applies them into
another. The GitHub interface also has a action which you can perform once your pull request is fully reviewed andMerge
approved.

pull A Git command for fetching in changes and merging them. For instance, if someone has edited the remote file you're both
working on, you'll want to pull in those changes to your local copy so that it's up to date. Writers normally don't do use this
command.

pull request A GitHub feature that allows you to submit changes from your fork back to the original repository owner. Pull requests allow
contributors to review, comment, and suggest changes before a merge.

push Pushing refers to sending your committed changes to a remote repository such as . For instance, if you changeGitHub.com
something locally, you'd want to then push those changes so that others may access them.

rebase A merge without the annoying merge commit. This is how SVN always works! I still can't figure out whether rebase is
something that everyone should use all the time or that advanced users should use for special situations. Also, a Git
command to forward-port local commits to the updated upstream head.

ref A reference to a single commit. This is a pointer. If you think of the commit history like a graph, then this points to a single
node in that graph. It could be a tag, or it could be the tip of a branch, or it could be , the current state of yourHEAD
repository.

In actual fact, a branch is simply a pointer and nothing more. The actual tree structure that represents the "branch" is the
commit graph, and the branch itself is just a pointer into that graph. Each repository has its own set of refs which are not
necessarily shared with other repositories.

remote An instance of a repository. You can pull changes from or push changes to remotes. origin is the your fork (owned by you)
that lives on GitHub and allows you to work without impeding with others. When you clone your fork, Git automatically

 is the "source of truth" the repository owned bycreates a remote for it called origin in the .git/config file. upstream
the Docker on GitHub.

repository A repository contains all of the project source files (including documentation), and stores each file's revision history.
Repositories can have multiple collaborators and can be either public or private.

https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-diff
http://GitHub.com
http://GitHub.com
https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/git-rebase

1.

2.

3.

SHA A unique ID (a.k.a. the "SHA" or "hash") for a commit.

ssh key SSH keys are a way to identify yourself to an online server, using an encrypted message. It's as if your computer has its own
unique password to another service. GitHub uses SSH keys to securely transfer information from to yourGitHub.com
computer.

tip The last commit on a branch, i.e. the most recent commit, is referred to as the tip of that branch, or sometimes the head. This
is a leaf in the commit graph, if you like to think in terms of graphs.

upstream When talking about a fork, the original repository is often referred to as the "upstream", since that is the main place that other
changes will come in from. The fork you are working on is then called the "downstream".

Enable a virtual machine

When to do this: As needed. A virtual machine allows you to run Docker CLI commands on your local system.

Prerequisites: Running on a Mac or Windows machine.
Docker Machine is installed either through Docker Toolbox or directly.

List the available machines.

$ docker-machine ls
NAME ACTIVE DRIVER STATE ...
default virtualbox Stopped ...

If you need to create a new machine:

$ docker-machine create --driver virtualbox default
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...
Starting VM...
To see how to connect Docker to this machine, run: docker-machine env
default

If you had to create a machine, you can skip the next step as your machine is already started.
Start a machine.

$ docker-machine start default
(default) Starting VM...
Started machines may have new IP addresses. You may need to re-run the
`docker-machine env` command.

Get the environment configuration for the machine you started.

http://GitHub.com

3.

4.

1.
2.
3.

4.

5.

$ docker-machine env moxie
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/Users/mary/.docker/machine/machines/default"
export DOCKER_MACHINE_NAME="default"
Run this command to configure your shell:
eval "$(docker-machine env default)"

Set the environment configuration for the machine you started.

$ eval "$(docker-machine env default)"

Create a repository clone on your local machine

When to do this: Infrequently. When you first
start working on a repo or if you
need to start over with a “fresh”
repo

Prerequisites: A GitHub account.

Click to enlarge

The procedure below assumes you are cloning the repository. docker/toolbox So, make sure you sub in your repo for in thetoolbox
examples below.

Go to the Docker repository on Github.
Fork the to your GitHub user account.docker/repository
In a shell back on your system, change directory () into your directory.cd ~/repos

$ cd ~/repos

If you don't have a repos directory, make one.

$ mkdir ~/repos

Clone your fork to your directory.repos
In the repo URL, your GitHub username should appear, in this example the username is .moxiegirl

$ git clone git@github.com:moxiegirl/toolbox.git
Cloning into 'toolbox'...
<snip>
Checking connectivity... done.

Change directory into your new repository.

5.

6.

7.

8.

9.
10.

11.

$ cd toolbox

Create an upstream remote that points to the original source repository.

$ git remote add upstream git@github.com:docker/toolbox.git

Set on the remote.no_push upstream

$ git remote set-url --push upstream no_push

Check the cat contains both remotes..git/config

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
<snip>
[remote "upstream"]
 url = git@github.com:docker/toolbox.git
 fetch = +refs/heads/*:refs/remotes/upstream/*
 pushurl = no_push

Edit the file in your favorite editor..git/config
Add a fetch for pull requests:

 [remote "upstream"]
 url = git@github.com:docker/toolbox.git
 fetch = +refs/heads/*:refs/remotes/upstream/*
 fetch = +refs/pull/*/head:refs/remotes/upstream/pull/*
 pushurl = no_push

Line 4 is what allows you to pull another user's code branch.
Initialize the local repository by running a of references for the , followed by a , and .fetch upstream master rebase push

 (also shownTo do this, follow the steps in the next procedure, Daily update and rebase the master branch on your local repository
below, in short form).

11.

1.

2.

3.

4.

$ git fetch upstream
From github.com:docker/toolbox
 * [new branch] buc-branch -> upstream/buc-branch
 * [new branch] build-test -> upstream/build-test
 * [new branch] master -> upstream/master

$ git rebase upstream/master
Current branch master is up to date.

$ git push origin
Everything up-to-date

Daily update and rebase the master branch on your local repository

When to do this: Daily or before you create a
pull request. This ensures
your local master and fork are
even with the upstream/master.
If you have a long-lived feature
branch, you should rebase your
feature branch frequently.

Prerequisites: A repository clone on your
local machine.
An upstream remote
defined.

Click to enlarge

This procedure gets the latest changes from the branch and updates your local clone with them. Then, youdocker/repository master
push the changes to the branch on your fork. Why do this? This ensures your local clone and fork are even with master docker/reposit

 branch. Remember, while your working on your feature branch, other people are working on theirs and merging changes intoory master
master. If your feature branch gets too far behind, you'll have a more complex merge to do when you are ready to send your changes with a
pull request.

Go to the root of your repository.

$ cd ~/repos/toolbox

Verify the branch you are on with a command.git status

 $ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

You should also have nothing to commit at this point. Remember, work directly in your branch.never master
If you are not on the branch, checkout the branch.master master

 $ git checkout master

Fetch the latest references from the upstream remote.
The references detail any changes that went into the repository since you last did a . fetch

4.

5.

6.

1.

 $ git fetch upstream
remote: Counting objects: 1986, done.
remote: Compressing objects: 100% (37/37), done.
remote: Total 1986 (delta 110), reused 93 (delta 93), pack-reused
1855
Receiving objects: 100% (1986/1986), 8.42 MiB | 1.63 MiB/s, done.
Resolving deltas: 100% (1064/1064), completed with 26 local
objects.
From github.com:docker/toolbox
 * [new branch] dockercon-demopack ->
upstream/dockercon-demopack
 * [new branch] master -> upstream/master
 * [new tag] v1.7.0 -> v1.7.0
 * [new tag] v1.7.1 -> v1.7.1
 * [new tag] v1.8.0-rc1 -> v1.8.0-rc1
 * [new tag] v1.9.1h -> v1.9.1h
<snip>

Rebase your local master branch.

$ git rebase upstream/master
First, rewinding head to replay your work on top of it...
Fast-forwarded master to upstream/master.

Push your changes to your fork.

$ git push origin
Counting objects: 1936, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (675/675), done.
Writing objects: 100% (1936/1936), 2.78 MiB | 1.08 MiB/s, done.
Total 1936 (delta 1057), reused 1908 (delta 1031)
To git@github.com:moxiegirl/toolbox.git
 5c0db16..cbd98e3 master -> master

Create and checkout a new feature branch

When to do this: Before you start working and
usually after you have updated
your master branch.

Prerequisites: A repository clone on your local
machine.

Click to enlarge

Change to the root of your repository directory.

1.

2.

3.

4.

1.

2.

3.

 $ cd ~/repos/toolbox

Checkout the branch.master
You can create a new branch from any other branch. It is a good idea to start from an updated branch because you'll bemaster
sure to have latest changes.

 $ git checkout master

Update and rebased your master branch.
You should do this every day.
Create a new code branch for your feature.

$ git checkout -b my-new-feature-branch
Switched to a new branch 'my-new-feature-branch'

The flag is what creates the new branch. Git also switches you into that branch. -b

Checkout an existing feature branch

When to do this: Whenever you need to.
Typically, before you start
working and usually after you
have updated your master bran
ch

Prerequisites: An existing feature branch in
your repository.

Click to enlarge:

Change directory to the root of your repository.

$ cd ~/repos/toolbox

Do a git status to see what branch you are currently on.
You may be on the branch you want already.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

If you forgot your branch name, list your branches.

3.

4.

1.

2.

3.
4.

5.

6.

$ git branch -l
* master
 my-new-feature-branch

Git places an * (asterisk) beside your current feature branch.
Checkout the branch you want to work on.

$ git checkout my-new-feature-branch
Switched to branch 'my-new-feature-branch'

Verify your work with the make docs command

When to do this: As you work to check the
layout.

Prerequisites: A feature branch with
some changes in it.
You should be in the docs
directory of your
repository.

You have to periodically display your work in a browser to check the menus and layouts are correct.

Change to the root of your repository.

$ cd ~/repos/machine

Checkout an existing or make a new branch.

 $ git checkout my-new-feature-branch

Modify or add files and folders.
Enable a VM if you haven’t already.

Useful commands to know
docker-machine ls
docker-machine start VM_NAME
docker-machine env VM_NAME
eval "$(docker-machine env VM_NAME)"
docker-machine IP VM_NAME

Change to the docs directory.

 $ cd docs

Get the VM of the machine.

6.

7.

8.

9.
10.

$ docker-machine ip moxie
192.168.99.100

Make the documentation.

$ make docs
docker build -t "docs-base:flickerbox-test" .
Sending build context to Docker daemon 647.2 kB
Step 1 : FROM docs/base:latest
 ---> 688fea15ab55
Step 2 : MAINTAINER Mary Anthony <mary@docker.com> (@moxiegirl)
 ---> Using cache
 ---> d343f6510c26
Step 3 : RUN svn checkout
https://github.com/docker/docker/trunk/docs /docs/content/engine
 ---> Running in 3679eaaef763
A content/engine/.gitignore
<snip>
338 pages created
287 non-page files copied
0 paginator pages created
0 tags created
0 categories created
in 1821 ms
Serving pages from /docs/public
Web Server is available at http://192.168.99.100:8000/ (bind
address 0.0.0.0)
Press Ctrl+C to stop

View the documentation by entering the VM”s IP address plus the port in your browser’s window.

Check your changes in the browser.
Iterate until perfect or you are satisfied.

What to look for when checking your local build

Check List

In the source code, visually spot check for:

Every line should wrap at 80 characters

Run a spell check and verify there are no spelling errors.

Make sure your Markdown is correct

Sentences end in a period

Markdown Tips

Element

If the change is more than paragraphs or it removes entire files:

Does the build report any errors that exist in the source
you are building

Does the content on the page look correct

Are the head levels correct meaning H1 the page title,
and everything else H2 or lower

Are notes in blue, indented, with a bold Note

Code is in code font inline and in code blocks

Images are displaying properly

Images are optimized

If you are adding entirely new files with a change, make sure the
metadata at the top of the file is correct.

Example of metadata
<!--[metadata]>
+++
title = "Plugins API"
description = "How to write
Docker plugins extensions "
keywords = ["API, Usage,
plugins, documentation,
developer"]
[menu.main]
parent = "mn_extend"
weight=1
+++
<![end-metadata]-->

The metadata must be commented out correctly

The value should be unique or the file should havetitle
an valueidentifier

The are appropriate to the contentkeywords

The value places the page correctly in theweight
documentation menu

Note
> **Note**
 > It's important
that you choose a
partitioning tool
that is available
as an ISO so
 > that the
Boot2Docker VM can
be booted with it.

Page title
 ## Head 2
 ### Head 3
 #### Head 4

Try not to go beyond 3 unless you absolutely have
to

How to check your work after a make docs
Check List

In the source code, visually spot check for:

Every line should wrap at 80 characters

Run a spell check and verify there are no spelling errors.

Make sure your Markdown is correct

Sentences end in a period

If the change is more than paragraphs or it removes entire files:

Markdown Tips

Element

Does the build report any errors that exist in the source you
are building

Does the content on the page look correct

Are the head levels correct meaning H1 the page title, and
everything else H2 or lower

Are notes in blue, indented, with a bold Note

Code is in code font inline and in code blocks

Images are displaying properly

Images are optimized

If you are adding entirely new files with a change, make sure the
metadata at the top of the file is correct.

Example of metadata
<!--[metadata]>
+++
title = "Plugins API"
description = "How to write
Docker plugins extensions "
keywords = ["API, Usage,
plugins, documentation,
developer"]
[menu.main]
parent = "mn_extend"
weight=1
+++
<![end-metadata]-->

The metadata must be commented out correctly

The value should be unique or the file should havetitle
an valueidentifier

The are appropriate to the contentkeywords

The value places the page correctly in theweight
documentation menu

Note
>
Note
 > It's
importa
nt that
you
choose a
partiti
oning
tool
that is
availab
le as an
ISO so
 > that
the
Boot2Do
cker VM
can be
booted
with
it.

Page
title
 ## Head
2
 ###
Head 3
 ####
Head 4

Try not to go beyond 3 unless
you absolutely have to

Add a new file or folder to Git tracking

When to do this: Periodically as you work,
commit your change. You
should create one commit for
each unit of work on a feature.
For example, adding a new
page or drafting a procedure.

Prerequisites: a clone on your local
machine
a feature branch in that
clone

Click to enlarge:

This example shows you how to add a directory to the subdirectory in a branch. Each directory should have an file, so thisdocs index.md

1.

2.

3.

4.

5.
6.

7.

example illustrates that as well.

Verify you are working in the correct branch.

 $ git status

If you aren’t in the right branch,check it out.

 $ git checkout my-new-feature-branch

Change to the directory in your repository where you want to make the change.

 $ cd docs

Add your directory to the file system.

 $ mkdir cooldir

Check your status.

$ git status
On branch my-new-feature-branch
nothing to commit, working directory clean

At this point your directory is empty. Git will only track a directory if it contains files.
Change to your new directory.
Add an file to it.index.md

$ touch index.md

The command is a simple Linux command for creating an empty file. You can also create one with your favorite text editor. Attouch
this point git knows you have a new directory. It doesn’t list the files only the directory because the directory and everything it
contains is untracked.
Check your status.

7.

8.

9.

10.

11.

$ git status
On branch my-new-feature-branch
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 ./
nothing added to commit but untracked files present (use "git add"
to track)
$ cd ..
$ git status
On branch my-new-feature-branch
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 cooldir/
nothing added to commit but untracked files present (use "git add"
to track)

Notice your status depends on where you are in the filesystem.
Add the directory to Git tracking.

$ git add ~/repos/machine/docs/cooldir

Check your status.

$ git status
On branch my-new-feature-branch
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: cooldir/index.md

Commit the change to your fork.

$ git commit -s -m "Adding a new directory"

Push your changes
Your fork is on GitHub and is known to your local Git as the remote.origin

$ git push origin
fatal: The current branch my-new-feature-branch has no upstream
branch.
To push the current branch and set the remote as upstream, use
 git push --set-upstream origin my-new-feature-branch

You have already noticed that Git tries to prevent you from breaking things by sending you messages as you work with the command
line. If this is the first time you’ve pushed this branch, then you have to set the upstream origin for the new branch. Git tells you this.
 So, set the for this branch as your fork.upstream

11.

1.

2.

3.

$ git push --set-upstream origin my-new-feature-branch
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
 * [new branch] my-new-feature-branch -> my-new-feature-branch
Branch my-new-feature-branch set up to track remote branch
my-new-feature-branch from origin.

The next change you push accepts a simple command without the flag.--set-upstream

$ git push origin
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 404 bytes | 0 bytes/s, done.
Total 5 (delta 2), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
 36abac3..2920840 my-new-feature-branch -> my-new-feature-branch

Push changes to a fork

When to do this: Periodically as you work,
commit your change. You
should create one commit for
each unit of work on a feature.
For example, adding a new
page or drafting a procedure.

Prerequisites: a clone on your local
machine
a feature branch in that
clone

Click to enlarge:

This example shows you how to add a directory to the subdirectory in a branch. Each directory should have an file, so thisdocs index.md
example illustrates that as well.

Verify you are working in the correct branch and list unstaged changes.

$ git status
On branch carry-1830
Your branch is up-to-date with 'origin/carry-1830'.
Changes not staged for commit:
 <snip>
 modified: install-machine.md

Stage your changes by adding them.

 $ git add install-machine.md

Commit your change locally.

3.

4.

5.
6.

1.
2.

3.

$ git commit -s -m "Incorporate comments"
[carry-1830 7bb79dc] Incorporate comments
 1 file changed, 20 insertions(+), 8 deletions(-)

Push your changes
Your fork is on GitHub and is known to your local Git as the remote.origin

$ git push
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 849 bytes | 0 bytes/s, done.
Total 4 (delta 3), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
 211f80a..7bb79dc carry-1830 -> carry-1830

Go to your fork on GitHub.
Look for the pushed code.

Rebase, squash, and push to your fork

When to do this: Daily. This ensures your
local master and fork are
even with the upstream/ma
ster. If you have a
long-lived feature branch,
you should rebase your
feature branch frequently.
Before you make a pull
request to ensure your
changes consist of single

, not several.commit
If you have an existing pull
request you need to
update.

Prerequisites: One or more changes on a
feature branch.

Click to enlarge

This procedure gets the latest changes from the branch and merges them to your feature branch. Then, youdocker/repository master
push the changes to the branch on your fork. Then, you rebase your feature branch to ensure it has all the changes from master master b

 you make a pull request. Why a single commit? It makes backing out a change easier. efore

Daily update and rebase the master branch on your local repository.
Checkout your feature branch.

$ git checkout my-new-feature-branch

Make sure you have pushed all your changes to your fork.
You want to make sure your changes are in the fork in case you mess up your rebase somehow. Having the changes in the fork
already make it easier to recover.

Do Description

git status Tells you if you have unstaged work or commits you haven't pushed.

3.

4.

a.
b.

c.
d.

git checkout – path_to_file To unstage work you don't want in the branch. This removes all your work in a
file.

git commit -s -m "message"
filename

To commit work you want in your fork.

git push origin Push your changes to your fork.

Interactively rebase your feature branch.
This command says to interactively take the changes from the upstream/master and merge them into your branch. Interactive
rebase allows you to fix (resolve) any conflicts with the changes in your feature branch.

$ git rebase -i upstream/master

When you issue this command, Git sends you into a rebase workflow. Make sure read the information Git gives you. Remember, Git
is a version control system, so you can recover from most any problem you may cause.

Git opens an editor listing all the commits in this branch.
Make sure only the first commit says pick; change the other instances to .pick squash

pick 2920840 adding thig
squash efa047f Adding in the metadata
Rebase 36abac3..efa047f onto 36abac3 (2 command(s))
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log
message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit
#
These lines can be re-ordered; they are executed from top to
bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be
aborted.
#
Note that empty commits are commented out

Save and close the file.
Git opens another editor listing all the commit messages.

4.

d.

e.

This is a combination of 2 commits.
The first commit's message is:
adding thig
Signed-off-by: Mary Anthony <mary@docker.com>
This is the 2nd commit message:
Adding in the metadata
Signed-off-by: Mary Anthony <mary@docker.com>
Please enter the commit message for your changes. Lines
starting
with '#' will be ignored, and an empty message aborts the
commit.
#
Date: Sun Jan 10 19:22:03 2016 -0800
#
interactive rebase in progress; onto 36abac3
Last commands done (2 commands done):
pick 2920840 adding thig
squash efa047f Adding in the metadata
No commands remaining.
You are currently editing a commit while rebasing branch
'my-new-feature-branch' on '36abac3'.
#
Changes to be committed:
new file: docs/cooldir/index.md
#

Leave all the messages but only one signature.

4.

e.

f.
g.

5.

6.

This is a combination of 2 commits.
adding thig
Adding in the metadata
Signed-off-by: Mary Anthony <mary@docker.com>
Please enter the commit message for your changes. Lines
starting
with '#' will be ignored, and an empty message aborts the
commit.
#
Date: Sun Jan 10 19:22:03 2016 -0800
#
interactive rebase in progress; onto 36abac3
Last commands done (2 commands done):
pick 2920840 adding thig
squash efa047f Adding in the metadata
No commands remaining.
You are currently editing a commit while rebasing branch
'my-new-feature-branch' on '36abac3'.
#
Changes to be committed:
new file: docs/cooldir/index.md
#

Save and close the file.
Git gives you the status of the rebase.

$ git rebase -i upstream/master
[detached HEAD 7f94622] adding thig
 Date: Sun Jan 10 19:22:03 2016 -0800
 1 file changed, 1 insertion(+)
 create mode 100644 docs/cooldir/index.md
Successfully rebased and updated
refs/heads/my-new-feature-branch.

Force push the updated branch to your fork.

$ git push -f origin
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 439 bytes | 0 bytes/s, done.
Total 5 (delta 2), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
 + efa047f...7f94622 my-new-feature-branch -> my-new-feature-branch
(forced update)

Go up to your fork on GitHub and make sure the pushed code is there.

6.

1.
2.

3.
4.

Fixing merge conflicts while rebasing
On this page:

MARINES. We are LEAVING! (Or how to get out of the
middle of a rebase)
We got nukes, we got knives, we got sharp sticks (or other
ways to do this)

The strange part is, seemed todocs-alpha7-a
be okay.

-- Vickley

Sometimes, when you rebase everything seems like it is ok. But then, you hit something you haven't seen
in a while. A merge conflict. And it isn't that much fun anymore. (Except for the Alien quotes...see if you can
spot them all)

Daily update and rebase the master branch on your local repository.
Switch to the local feature branch that contains the changes you want to merge.

$ git checkout docs-alpha7-a

Start an interactive rebase.
Git prompts you to edit the "todo" list.

4.

5.

6.

7.

Change all "pick" to "squash" except for the first pick which should stay pick.

Save and close the release-merge.
Git starts the rebase and then it says:

$ git rebase -i upstream/master
error: could not apply 1361eae... Pass network driver option in
docker network command

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase
--abort".
Could not apply 1361eaef7c796911b58002c248bcd158ad1272fd... Pass
network driver option in docker network command

At this point, you suddenly think I'm on an express elevator to hell, going down! Because you know you have a merge conflict and
your rebase is stopped until you resolve it.
Use the git status command to see where the conflict is.

7.

8.
9.

10.

$ git status
interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):
 pick 1361eae Pass network driver option in docker network
command
Next commands to do (49 remaining commands):
 squash 10b5949 Update ambassador image, use the socat -t option
 squash 69cfb52 Docs: update docs for API stats
 (use "git rebase --edit-todo" to view and edit)
You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: api/client/network.go
 both modified: api/server/router/network/network_routes.go
 both modified: daemon/network.go
 both modified: integration-cli/docker_cli_network_unix_test.go
 both modified:
vendor/src/github.com/docker/engine-api/types/types.go

no changes added to commit (use "git add" and/or "git commit -a")

It’s very pretty, you think, but what are we looking for? You are looking for the . You modified those files but soUnmerged paths
did someone else on the master branch you are rebasing against.
Open the first modified file for editing.
Search the file for or just .<<<<<<< HEAD HEAD
When you find the conflict it looks like this:

9.

10.

11.
12.
13.

14.

15.
16.

Remove the markers and the content you don't want.
Your browser does not support the HTML5 video element
Repeat for each remaining HEAD conflict.
Save and close the file.
Do a git status again to see what happened.

$ git status
interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):
 pick 1361eae Pass network driver option in docker network
command
Next commands to do (49 remaining commands):
 squash 10b5949 Update ambassador image, use the socat -t option
 squash 69cfb52 Docs: update docs for API stats
 (use "git rebase --edit-todo" to view and edit)
You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: api/client/network.go
 both modified: api/server/router/network/network_routes.go
 both modified: daemon/network.go
 both modified: integration-cli/docker_cli_network_unix_test.go
 both modified:
vendor/src/github.com/docker/engine-api/types/types.go

no changes added to commit (use "git add" and/or "git commit -a")

The file you changed still shows as modified.
Use the command to mark the file's conflicts resolved.git add

$ git add api/client/network.go

Repeat step 7 through 14 until all the conflicts are resolved.
After you have added all the files, do a git status again.

Vickley, what are you doing? Do not use the git commit message during a rebase! Git does the commits for you
automatically.

16.

17.

18.

19.

20.

$ git status
interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):
 pick 1361eae Pass network driver option in docker network
command
Next commands to do (49 remaining commands):
 squash 10b5949 Update ambassador image, use the socat -t option
 squash 69cfb52 Docs: update docs for API stats
 (use "git rebase --edit-todo" to view and edit)
You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: api/client/network.go
 modified: api/server/router/network/network_routes.go
 modified: daemon/network.go
 modified: integration-cli/docker_cli_network_unix_test.go
 modified: vendor/src/github.com/docker/engine-api/types/types.go

As you can see, we're in the pipe five-by-five. Everything is ready to continue.
Tell Git to continue the rebase.

$ git rebase --continue

Git asks you to edit the final commit message.

Save and close the file to continue.
You may have to resolve multiple conflicts. Why is that? A rebase is Git "Playing" the commits from master over your branch.
Continue until Git tells you it succeeded.

20.

21.

$ git rebase --continue
[detached HEAD b2f92e6] Fixed path to docker.log from Finder, added
what's new item re: com.docker.driver.amd64-linux binary, format
copyedits
 1 file changed, 1 insertion(+), 1 deletion(-)
Successfully rebased and updated refs/heads/docs-alpha7-a.

Aye-firmative. Ready to push to your fork.
Push the rebased code to your fork.

$ git push -f origin
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (7/7), 632 bytes | 0 bytes/s, done.
Total 7 (delta 5), reused 0 (delta 0)
To git@github.com:londoncalling/pinata.git

 + b73399a...b2f92e6 docs-alpha7-a -> docs-alpha7-a (forced update)

Now would be a time to have a strong mocha with whipped cream, and consider this: don't try to when you are in the middle of acommit
rebase.

MARINES. We are LEAVING! (Or how to get out of the middle of a rebase)

What do you do if you run into a problem or simply get confused in the middle of a rebase? Up to the point the Git rebase announces it is
successful, you can get the heck out of an interactive rebase at any time by doing this:

$ git rebase --abort

This stops the rebase and returns you to exactly the point you were at when you started the rebase. It is as if it never happened. Now, you
can start again or ask for help.

We got nukes, we got knives, we got sharp sticks (or other ways to do this)

There are lots of ways to do a rebase and lots more to Git merge than this one page teaches you. So, do some reading and this article on Git
 is really good. Conflict Resolution

Create a pull request

When to do this: You are ready to have
your work reviewed by
others.
You want to create a WIP
pull request so people can
see your changes as you
work.

Prerequisites: Feature work done or in
progress on a branch.

Click to enlarge:

http://tedfelix.com/software/git-conflict-resolution.html#git-rebase
http://tedfelix.com/software/git-conflict-resolution.html#git-rebase

1.
2.
3.

4.

5.

Introductory sentence

Rebase, squash, and push to your fork.
Go to your fork on GitHub.
Make sure your feature branch is pushed.

 Press .Compare & pull request

Make sure the pull request is to the docker/repository master and from your/repository feature branch.

5.

6.

7.

8.

Write a reasonable message about your work to let reviewers know why this change.

Check the content of the pull request.
The number of files, the names of the files, and the changes should all be checked.

Press .Create pull request
GitHub creates the pull request on the original repository. Take some time to navigate among the tabs on the pull request.

8.

1.

2.

3.
4.
5.
6.

7.
8.

9.

Participate a pull request review
Completed work goes through a peer review. The mechanism for reviewing work in GitHub is a pull request. This page contains information
specific to reviewing pull request for Docker repositories.

Make sure you read through or review .the GitHub help for pull requests

Terminology

Term Definition

open
source
software
(OSS)

OSS is computer software with its source code made available with a license in which the copyright holder provides the rights to
study, change, and distribute the software to anyone and for any purpose. Open-source software may be developed in a collabor
ative public manner.

maintainer A person responsible for code in a Docker OSS GitHub repository. This person is approved by Docker and has permissions to
merge PRs on our projects.

developer A person responsible for code in a Docker commercial GitHub repository.

reviewer OSS repositories are public, this means anyone can review a

LGTM LGTM is an acronym that stands for ooks ood o e and, like it sounds, it means the person who wrote it approves of yourL G T M
work. People will sometimes give you a which means I don't approve this. –LGTM

Workflow for getting a pull request reviewed

From GitHub, create a pull request from your fork to a branch on the Docker-owned repository.
Typically, the pull request will be from your fork's feature branch to the master branch on the Docker repository.
Make sure your pull requests references any related issues it is fixing or closing.
There are a couple of ways to do this. You can or you can add an issue number in a Git comment add a link reference in the PR

. description
Mention or ping the reviewers you want.
Change the label on the PR to "ready for a review."
Respond to the reviewers in a timely manner.
If you are asked to change something, you make the change in the same feature branch where the PR originated.
There is a one-to-one relationship between feature branch and pull requests. You cannot have to PR which both originate with the same
feature branch.
Commit and push your change as you normally would.
Then, rebase and squash to ensure your PR has a single commit.

https://help.github.com/articles/using-pull-requests/
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Copyright
https://help.github.com/articles/closing-issues-via-commit-messages/
https://help.github.com/articles/writing-on-github/#references
https://help.github.com/articles/writing-on-github/#references
https://help.github.com/articles/writing-on-github/#features

9.

10.
11.

Add a comment to the PR to notify the reviewers you have updated the work.
This comment causes GitHub to notify your reviewers you've updated your work. If you forget this, the reviewers will not come back.
Ask for a review if you don't have enough LGTMs.
Merge when you have .met all the requirements

When is an LGTM not an LGTM?

People can qualify an LGTM for example:

LGTM with the changes noted in my review

If you get a qualified LGTM, then make the change and ask for another check from the commenter. Only then can you accept their LGTM as
legit.

 So, that means you must work with the review to address his or her concerns.

Requirements (rules) for merging

When you merge a pull request, you move code from your fork's feature branch into Docker's code base. There are the import rules for
merging. There are some projects and repositories where there are exceptions to these rules. ThisYou should always follow these rules.
page explains both the rules and the acceptable exceptions.

Open source (public) merge rules

These apply to all Docker OSS projects:

You must have at least two reviewers who are project
maintainers give you an LGTM.
If you are making a significant change, you must get a
review from another doc-maintainer.

If you are moving or removing pages
If you are adding or removing more than 1
paragraph

Do not merge your own PR: someone else must merge it for
you.
Do not merge if there is a broken Continuous Integration
(CI) test on your PR.

Re-run the test to see if it clears
If the test continues to fail, get a
comment a comment on the PR from a
maintainer on the project which says:

 Good to merge with broken test;
not a doc impact

Commercial source (private) merge rules

These apply to all Docke commercial projects:

You must have at least one reviewer who is a developer
give you an LGTM.
If you are making a significant change, get an LGTM from a
documentation team member.
Do not merge if there is a broken Continuous Integration
(CI) test on your PR.

Re-run the test to see if it clears
If the test continues to fail, get a comment on the
PR from a developer on the project which says:

 Good to merge with broken test; not
a doc impact

Exceptions in open source

Project Exception

 docker/docker The project allows you to
merge your own pull request
provided all the other
conditions are met.

docker/docs-base Mary reviews each of
Sven's PRs
Sven or Seb reviews each
of Mary's PRs
Mary and Sven reviews
any other contribution

Exceptions in commercial source

None at this time.

1.
2.
3.

4.
5.

1.

docker/docs.docker.com Mary reviews each of
Sven's PRs
Sven or Seb reviews each
of Mary's PRs
Mary and Sven reviews
any other contribution

Test or carry another user's code branch

Sometimes, you need to build the code on another user's pull request. For example, if you want to check the document layout or see how the
page flows. A pull request's code is accessible through the upstream remote. You can check it out like any other branch, provided you have
configured your repository properly. .git/config

Configure the .git/config for the repository

Change to the root of your repository.
Edit the file in your favorite editor..git/config
Add a fetch for pull requests:

 [remote "upstream"]
 url = git@github.com:docker/orca.git
 fetch = +refs/heads/*:refs/remotes/upstream/*
 fetch = +refs/pull/*/head:refs/remotes/upstream/pull/*
 pushurl = no_push

Line 4 is what allows you to pull another user's code branch.
Save and close the file.
Do a to download the refs for all the pull requests to your local system.git fetch

$ git fetch upstream
Saving password to keychain failed
Identity added: /Users/victoriabialas/.ssh/id_rsa
(/Users/victoriabialas/.ssh/id_rsa)
remote: Counting objects: 4518, done.
remote: Compressing objects: 100% (21/21), done.
remote: Total 4518 (delta 2570), reused 2568 (delta 2568), pack-reused
1929
Receiving objects: 100% (4518/4518), 5.93 MiB | 3.32 MiB/s, done.
Resolving deltas: 100% (3114/3114), completed with 984 local objects.
From github.com:docker/compose
 * [new ref] refs/pull/10/head -> upstream/pull/10
 * [new ref] refs/pull/100/head -> upstream/pull/100
 * [new ref] refs/pull/1001/head -> upstream/pull/1001
 * [new ref] refs/pull/1002/head -> upstream/pull/1002
 * [new ref] refs/pull/1005/head -> upstream/pull/1005
 * [new ref] refs/pull/1006/head -> upstream/pull/1006
 * [new ref] refs/pull/1007/head -> upstream/pull/1007
 ...

How to checkout another user's code branch

In GitHub, locate the number of the pull request you want to checkout.

1.

2.
3.

4.

5.

1.
2.

3.

a.

Make sure you are in your repo.
Use the checkout command like this:

$ git checkout upstream/pull/704
Note: checking out 'upstream/pull/704'.

You are in 'detached HEAD' state. You can look around, make
experimental
changes and commit them, and you can discard any commits you make in
this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you
may
do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b <new-branch-name>

HEAD is now at 4cb5a79... Document how to install UCP in production

Read the message Git gives you.
In this branch, you can make changes but you can't push back your changes. If you want to do that, branch off the branch as Git
instructs.
Once you review how the code in the PR behaves, you can make comments about it on GitHub.

Carrying a PR on a new branch

You can a PR for another contributor or person. You carry a PR in thesecarry A carry allows you to make any needed code changes yourself.
situations:

the contributor has started but can't complete a change
a contributor abandoned a change
a contributor or another Docker maintainer asks you to in the course of your work

If you decide to carry, do the following:

Add a comment telling the requestor that you will carry.on the existing PR
Branch from the detached HEAD that you created with the upstream pull on the PR.

$ git checkout -b carry-pr-704

This creates a new, standard, local branch that points to HEAD. From here, you can work with the files and branch as you normally
would.
When you are ready to push, follow the same procedure as you typically do, described in , withRebase, squash, and push to your fork
these few exceptions:

In the commit message, indicate that the commit "carries and closes #<PR>".

3.

a.

b.
c.

d.

$ git commit -s -m "Carries and closes #3047"

The #mention is a GitHub feature. It causes GitHub to automatically close the original pull request when your new request is
merged.
Provide the option to open a new PR with your latest changes, and carry along the original commits and conversation thr
When you do the interactive rebase (), the commit messages will include those from$ git rebase -i upstream/master
the initiator of the original PR, along with their signature.
Be sure to keep those in the message along with your messages and signature when you save and close the file.
After pushing the changes (), go to your fork and make sure that the changes show up there, then$ git push -f origin
continue with . On the branch you were working in, you'll get the option to open a new PR with your latestCreate a pull request
changes, and carry along the original commits and conversation thread.

Understand when and how to merge a pull request
When you merge a pull request, you move code from your fork's feature branch into Docker's code base. There are the import rules for
merging. There are some projects and repositories where there are exceptions to these rules. ThisYou should always follow these rules.
page explains both the rules and the acceptable exceptions.

Open source (public) merge rules

These apply to all Docker OSS projects:

You must have at least two reviewers who are project
maintainers give you an LGTM.
If you are making a significant change, you must get a
review from another doc-maintainer.

If you are moving or removing pages
If you are adding or removing more than 1
paragraph

Do not merge your own PR: someone else must merge it for
you.
Do not merge if there is a broken Continuous Integration
(CI) test on your PR.

Re-run the test to see if it clears
If the test continues to fail, get a
comment a comment on the PR from a
maintainer on the project which says:

 Good to merge with broken test;
not a doc impact

Commercial source (private) merge rules

These apply to all Docke commercial projects:

You must have at least one reviewer who is a developer
give you an LGTM.
If you are making a significant change, get an LGTM from a
documentation team member.
Do not merge if there is a broken Continuous Integration
(CI) test on your PR.

Re-run the test to see if it clears
If the test continues to fail, get a comment on the
PR from a developer on the project which says:

 Good to merge with broken test; not
a doc impact

Exceptions in open source

Project Exception

 docker/docker The project allows you to
merge your own pull request
provided all the other
conditions are met.

docker/docs-base Mary reviews each of
Sven's PRs
Sven or Seb reviews each
of Mary's PRs
Mary and Sven reviews
any other contribution

Exceptions in commercial source

None at this time.

1.

2.

3.

4.

5.
6.
7.

docker/docs.docker.com Mary reviews each of
Sven's PRs
Sven or Seb reviews each
of Mary's PRs
Mary and Sven reviews
any other contribution

Backing out changes you already pushed to GitHub

When to do this: There may be times when you
have files pushed to GitHub
and you need to back some of
the files out and keep others.
This procedure removes the
unwanted files.

Prerequisites: A file already committed to your
branch.

Click to enlarge:

Check out your branch and check your status.
You don't want to have changes pending or staged.
List the commits on your branch that aren't on .upstream/master

$ git log upstream/master..my-new-feature-branch

Reset the branch to the last committed change.

$ git reset --soft HEAD^

The single ^ caret removes the last commit. If you had three commits in this branch, you could have typed: git reset --soft
 If you had five commits you could have used five carrots or: HEAD ^^^ git reset --soft HEAD ~5

Do another git status.
You should see all the changes in your branch.

All your files are now uncommitted. You can unstage them.
Once you are satisfied, the files you want to commit.git add
Push your changes to your fork on GitHub.

7.

1.

2.

1.
2.

3.
4.

5.
6.

Go to GitHub and verify your changes.

How to cherry-pick a commit for release
Periodically, the docs build engineer updates docs.docker.com between official releases of Docker. They do this by:

cherry-picking commits from a branchmaster
merging them into the branchdocs
publishing the result from the branchdocs

Create a cherry-pick based off of the upstream/docs branch

Go to your `docker/docker` fork and get the latest from master.

$ git fetch upstream

Checkout a new branch based on `upstream/docs`.
You should give your new branch a descriptive name.

$ git checkout -b post-1.2.0-docs-update-1 upstream/docs

Find the commits you want to cherry pick

Cherry-pick commits that have in them. These are documentation changes. If you cherry-pick commits with code files in them,only .md files
chances are you are cherry picking functional product changes intended for a future release.

In a browser window, open [].https://github.com/docker/docker/commits/master
Locate the merges you want to publish.
You should only cherry-pick individual commits; do not cherry-pick merge commits. To minimize merge conflicts, start with the oldest
commit and work your way forward in time.
Copy the commit SHA from GitHub.
Cherry-pick the commit.

$ git cherry-pick -x fe845c4

Repeat until you have cherry-picked everything you want to merge.
Push your changes to your fork.

$ git push origin post-1.2.0-docs-update-1

Git Going Cheesheet
This page has some quick reference commands for using Git with the Writer workflow. They are categorized by specific activities. Where there is
a detailed procedure. That is noted.

Set Global Git Configuration
Getting a repo to your local machine
Commonly used commands
Undoing Git things
How to get to another users' fork when you don't have the URL
Other helpful commands
Non-Git commands you need to run in the course of your work

Set Global Git Configuration

https://github.com/docker/docker/commits/master

Typically, you only do this one per machine.

Command Notes

git config --global user.name "FirstN
ame LastName"

You need to do this before creating a pull request.

git config --global user.email "email
name@mycompany.com"

git config --global core.editor "atom
--wait"

This assumes Atom is your editor. You might want to use another editor so change the
command accordingly.

Getting a repo to your local machine

See for the full procedure.Create a repository clone on your local machine

Command or Action Notes

Fork the original repo on GitHub Copies the repo to your account.

git clone url-to-your-forked-repo Clones the repo to your local machine. Usually you should use the SSH protocol.

git remote add upstream url-to-the-orig
inal-repo

Do this from the within your fork directory. This sets as upstream the Docker repository
you forked.

git remote set-url --push REMOTE_NAME
no_push

This command prevents the accidental push to a repository.

Commonly used commands

Most of these commands you use every day.

Command Notes

git status Used on the file system within a repo. Informs you about the current status.

git checkout BRANCH_NA
ME

Checks out an existing branch --- basically switches you to the branch

git fetch REMOTE_NAME Fetches the latest references (committed changes) from a remote. If you use the , called upstream remote ---
if you are following along with this page, that is the original repo

git rebase REMOTE_NAME
/BRANCH_NAME

Does a fast-forward merge. Dangerous if you don't know what you are doing. See Daily update and rebase
 and .the master branch on your local repository Rebase, squash, and push to your fork

git add filename Stages a file for commit. See Add a new file or folder to Git tracking

git commit -s -m “Mess
age for commit”

Commits a change. See Add a new file or folder to Git tracking

git push REMOTE_NAME Pushes changes to a remote repository. See Add a new file or folder to Git tracking

Undoing Git things

http://user.name
http://mycompany.com

Command Notes

git checkout
BRANCH_NAME –
FILE_PATH

Checkout a file from specific branch. For example, if you want to back out a file change you made in a feature
branch, you can checkout the file from the branch.upstream/master

git checkout upstream/master -- docs/multi-manager-setup.md

git checkout --
FILE_NAME

Discards a file that you modified but did not commit yet, and reverts it to its state before you made the changes.

Examples:

git reset --hard
HEAD~2

Removes the last two commits. Increase the number to remove even more commits.

git reset HEAD^ "Uncommits" the commits (removes them from the branch and the index), but retains the changes in the
working tree for re-working.

git branch -b
BRANCH_NAME

Run this in an existing feature branch when you want to save current changes to a different branch.

How to get to another users' fork when you don't have the URL

Other helpful commands

Command Notes

git config --global core.excludesfile 'file-type-or-path' Prevents Git from including files or folders
in a commit.

git log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s
%Cgreen(%cr)%Creset'

--abbrev-commit --date=relative --since=2015-08-11 branchname..master
docs

Example of a fancy comparison.

Non-Git commands you need to run in the course of your work

Command Notes

ssh-add ~/.ssh/filename Adds an identity to the ssh-agent on your Mac. See Correct a Permission Denied
(publickey) error

docker rm $(docker ps -a -q) Removes all the containers.

docker rmi -f $(docker images -q -a -f
dangling=true)

This will remove untagged images, that are the leaves of the images tree (not
intermediary layers). If you have a container that is using the image it is not removed.

docker rmi -f $(docker images -q -a) Forcefully removes all images.

docker-machine create -d virtualbox
--virtualbox-disk-size "20000" default

Creates machine called with the size of 20G. Useful if you run out of spacedefault
on your machine.

FAQ about writers and Git
Why not just use the Edit command on a file in GitHub?
Why don't the writers just use X simple GUI for Git or do Y instead of X with Git?

Why not just use the Edit command on a file in GitHub?

The edit command doesn't allow a user to enter a signature that our CI system can recognize. It also doesn't allow the contributor to easily update
the change.

Why don't the writers just use X simple GUI for Git or do Y instead of X with Git?
Writers use the Git command line and use the same, identical workflows because:

Writers use the same process and tools we teach our OSS contributors: this allows writers to help contributors on the OSS project
GUI tools or other tools are just one more thing to learn.
If each writer chooses a tool they like, then whoever is helping them is stuck learning number of tools. Not practical. N
If writers use the Git command line and no other writer is around to help them, then an engineer is likely to know Git and can help.
Using the command line forces writers into simple developer workflow. It is the workflow our contributors use. Adding to a writers
knowledge in this way makes them more effective in working with their audience.
Git is very flexible, there are a millions of ways to do each thing. There are millions of situations they can get into. If writers stick to the
same proven workflow, particularly when learning Git/GitHub, they are less likely to get into trouble.

Troubleshooting Git
Correct a Permission Denied (publickey) error
Correct a TLS-enabled daemon error

Correct a Permission Denied (publickey) error

If you get a public key error interacting with a remote repository. Make sure you add your public key to your SSH agent.

$ git fetch upstream
Permission denied (publickey).
fatal: Could not read from remote repository.
Please make sure you have the correct access rights
and the repository exists.
$ ssh-add ~/.ssh/mma-docker
Enter passphrase for /Users/mary/.ssh/mma-docker:
Identity added: /Users/mary/.ssh/mma-docker (/Users/mary/.ssh/mma-docker)

Correct a TLS-enabled daemon error

1.

2.

3.

4.

TLS-enabled daemon error
$ make docs
docker build -t "docs-base:fixes-15790" .
Post
http:///var/run/docker.sock/v1.20/build?cgroupparent=&cpuperiod=0&cpuquota
=0&cpusetcpus=&cpusetmems=&cpu<snip>: no such file or directory.
* Are you trying to connect to a TLS-enabled daemon without TLS?
* Is your docker daemon up and running?
make: *** [docs-build] Error 1

Check and see if your machine is running.

$ docker-machine ls
NAME ACTIVE DRIVER
default * virtualbox

If it is running, get the environment config for your machine.

$ docker-machine env default

Set the environment config for your machine.

$ eval "$(docker-machine env default)"

Try the command again.make docs

Checkout a remote branch from GitHub

When to do this: You might want to do this if you
accidentally remove or destroy
your local repository.

Prerequisites: A clone of your fork.

The branches on your GitHub fork are remote from your local repository. When you clone a fork, the operation has the references forclone
all the remote branches, but only creates a branch locally. To list all the branches Git knows about both local and remote, use the master gi

 command. The output shows the branches that are local and the remote ones.t branch -la

$ git branch -la
* fix-904
 fix-release-notes
 master
 remotes/origin/HEAD -> origin/master
 remotes/origin/add-engine-discovery
 remotes/origin/block-out-docs
 remotes/origin/carry-443
 remotes/origin/deploy-app
 remotes/origin/docs-beta-7

To checkout a remote branch, select the branch you want to checkout and then use the flag when you check it out. For example:-t

git checkout -t origin/branch-name

Git checks out and creates a local branch that has the name as the remote and that the remote branch at .tracks origin/branch-name

You can use with the () flag to create the branch without switching to it.git branch -t –track

Guidance and Style
Page construction and format
Style Guide
Terminology
Guidelines for screenshots and illustrations
Other Books, Blogs, and Bibliostuff

Page construction and format
Metadata
Block TBD and TODO in Comments
Code and command line examples

Metadata

Each page starts with metadata in TOML format. Hugo calls .this area Frontmatter

 <!--[metadata]>
+++
draft=true|false
title = "Title as it appears on a menu"
description = "Description of page"
keywords = ["appear as metatags in a generated HTML document"]
[menu.main]
identifier="Page identifier"
parent = "Parent page identifier"
weight = "negative or positive integer value"
+++
<![end-metadata]-->

http://gohugo.io/content/front-matter/

Lines

1 and 12 Comments. They are there to hide the metadata when the page is displayed in GitHub. GitHub displays pages but this is display,
not a web; don't confuse it with one. Even so, developers like the page display to "work" in GitHub so we facilitate for that if we can.

2 and
11

TOML format designators.

3 This is an optional component. When true, the page is not generated for the web. The default false ensures it is.

7 thru
10

Metadata
Block TBD and TODO in Comments
Code and command line examples

Specifies where and in which in the menu this page appears. If you don't specify an identifier, the page uses the title as the
identifier. This can cause problems, say between the `docker help` command the `docker-machine help`. For reference material,
include an identifier to prevent name collisions such as:

identifier="eng_info"

You can have multiple menu configurations; which means you can place the page in any menu in our system. The valueparent
says which menu this page hangs off of. No parent? You have a top level page.

10 A word about the value. This sorts a page a menu. If you don't specify a weight, the menu sorts alphabetically.weight within
Negative weighted pages are placed higher than positive. Try to add this value infrequently. If you have to add, use blocks of 10 you
can always add pages easily. If you start with single digits, you have to reshuffle.

Block TBD and TODO in Comments

If you want to leave a TBD, TODO, image placeholder, or other production comment in a in a page, put it in comment blocks.

<!--[metadata]>
Need an image here.
<![end-metadata]-->

Code and command line examples

Code can appear in three kinds places,

as part of sentence to indicate a file or command name
within the body of the page text
as part of ordered or unordered list

Within the documentation generation system, we use Highlight JS to create syntax highlighting in our docs. Our system supports highlighting for
dozens of languages (and not-really-languages, like diffs and HTTP headers); to see the complete list, and how to write the language names, see
the highlight.js demo page.

Inline `code` has it.`back-ticks around`

Within the body of the page text, fence code blocks with three back-ticks and then follow the tics with a language indicator.```

https://highlightjs.org/
http://softwaremaniacs.org/media/soft/highlight/test.html


```css
@font-face {
  font-family: Chunkfive; src: url('Chunkfive.otf');
}
```
Or this:

```javascript
var s = "JavaScript syntax highlighting";
alert(s);
```

To get code blocks right, you need to be careful with the indentation you're using. .Check this sample to learn more

Style Guide
We pick an industry style guide to follow and document only those things that are contrary to the book.

Internal Style Guide

https://gist.github.com/joaofnfernandes/cdd1e51cf0dfe4d3aacc

Read Me First! A Style Guide for the Computer Industry
Third Edition (3rd Edition)

by Sun Technical Publications
Link: http://amzn.com/0137058268

Terminology
This page describes how to use special Docker terms in your writing.

Docker alone
Docker resource and or objects
Docker Engine
Docker Machine
Docker Compose
Docker Swarm
Docker Notary
Embedded in product
Component Projects (Notary and Registry)
Docker Trusted Registry
Docker Commercially Supported Engine
Universal Control Plane (UCP)

Docker alone

Docker refers to the family of OSS projects and commercial products which includes Engine, Machine, Swarm, Docker Hub, Registry etc.

Docker resource and or objects

Some things are objects or resources used within the Docker ecosystem. In these cases, where we are trying to "own" a branded flavor of these
resources of objects, the product designator should be dropped.

Docker container
Docker volume
Docker container network
Docker image

Docker Engine

Docker Engine is the core product which provides image and container functionality.

First use on a page within text, not menu titles.

Docker Engine
Docker Engine daemon

http://amzn.com/0137058268

Docker Engine CLI
a Docker Engine client
Docker Engine host
Docker Engine Remote API

Subsequent references in text

Engine daemon
Engine CLI
Engine CLI commands
an Engine command
an Engine client
Engine Remote API
Engine host
Engine

Docker Machine

Victoria Bialas maybe you want to expand Machine terms here?

First use on a page within text, not menu navigation.

Docker Machine
Docker Machine CLI
host () - we just need to clarify what lower-case "machine" is (I've done so in latest draft of "overview") machine
Dockerized host (not specific to Machine topics, though)

Subsequent references in text

Machine
Machine CLI

Docker Compose

First use on a page within text, not menu navigation.

Docker Compose
Docker Compose CLI

Subsequent references in text

Compose
Compose CLI

Docker Swarm

First use on a page within text, not menu navigation.

Docker Swarm
Docker Swarm CLI

Subsequent references in text

Swarm
Swarm CLI

Related terms:

Swarm cluster
cluster
high availability (HA) first use
HA subsequent use
node is a system belonging to a Swarm cluster. This system (VM or iron) is running Docker Engine
manager - a node running the Swarm manager container
primary manager - currently active manager in a cluster with multiple managers
secondary manager - a node capable of replacing the primary manager should it fail

Docker Notary

https://docker.atlassian.net/wiki/display/~victoria.bialas

Notary is a component project that stands alone. It is also embedded into some of our products to provide trust to our image content.

Embedded in product

First use on a page within text, not menu navigation.

Docker content trust

Subsequent references in text

content trust

Component Projects (Notary and Registry)

First use on a page within text, not menu navigation.

Docker Notary
Docker Notary CLI
Docker Notary API

Subsequent references in text

Notary
Notary CLI

Docker Trusted Registry

First use on a page within text, not menu navigation.

Docker Trusted Registry

Subsequent references in text

Trusted Registry

Docker Commercially Supported Engine

First use on a page within text, not menu navigation.

Docker Commercially Supported Engine

Subsequent references in text

CS Engine

Universal Control Plane (UCP)

First use on a page within text, not menu navigation.

Docker Universal Control Plane

Subsequent references in text

UCP

Related terms:

See the Docker Swarm section above.

UCP cluster
cluster
high availability (HA) first use
HA subsequent use
node is a system belonging to a UCP installation and the underlying Swarm cluster. This system (VM or iron) is running Docker Engine
controller - a node running the UCP controller processes
primary controller - currently active controller in a cluster with multiple controllers
replica - a node capable of replacing the primary controller should it fail

ucp tool
ucp tool's subcommand such as , , etc. XXX engine-discovery install
the "hamburger" menu pop-out — menu

Guidelines for screenshots and illustrations

When to do this: Refer to these guidelines when
using screenshots and
illustrations in your
documentation. The goal of this
page is to help you create
meaningful graphics that
quickly convey important
information.

Prerequisites: Snagit and Gliffy

Good graphics are critical

Did you know that good graphics could save lives? If you are not
familiar with the Space Shuttle Challenger disaster that occurred on
January 28, 1986, you can read about it here: https://en.wikipedia.or
g/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conferen

. Suffice to say that if the contractor's charts were viewed,ce_call
NASA would have realized that the failure rate of the O-rings
increased exponentially in cold weather and they would have
delayed that fatal launch which killed the crew.

General notes

Whether you are creating screenshots or graphics, let common sense be your guide. The goal is to display information graphically so that
users can quickly understand what they are reading about. While you may choose to use to resize your screen,http://resizemybrowser.com/
it's not necessary if you use your laptop to take the screenshot. Currently, most of our docs are read on a laptop. If we begin to use our
phones to view doc information, then we will have to revisit this.

Since Docker is a relatively young company, it makes sense to talk about . These guidelines will assist the doc team in creatingbranding
screenshots and graphics that are similar in style and tone to the Docker web presence.

Introduce your screenshot or graphic before inserting it with a sentence or two. This gives readers a head's up of what they are looking at or
what is important for them to focus on.

Setting up your tools

Whether you need to take screenshots or create diagrams, you'll first need to set up your tools.

Colors
To help you in choosing colors, here are the web safe ones to use (some of these are not final):not

Black (standard) #333333 http://www.color-hex.com/color/333333
Screenshot borders gray78 #c7c7c7
blue #22b8eb This is the main color in case you were wondering and didn't use the free cool tool CSS Viewer.

: #FF66900Arrows Orange
: Callouts Orange #FF66900 or FF9900 (Either color works depending on contextTangerine

Text in Callouts: Black (standard) #333333

: Callouts with numbers Tangerine FF9900 (Currently I like the Snagit default of using circles since they can be placed anywhere
and circles reinforce the wavy look.)

Screen Resolution (or getting the best screenshot possible)

Assume that our audience is reading our documentation on a laptop. So, when taking a screenshot, it makes sense to create it from a laptop
screen to ensure readers will not have to scroll to see it in its entirety.

WIP COMMENT

THIS IS A DRAFT PLEASE COMMENT AWAY

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
http://resizemybrowser.com/
http://www.color-hex.com/color/333333
http://www.color-hex.com/color/c7c7c7

Apple Retina display

Does Apple Retina display matter? Docker writers are using MacBooks with Retina display which Apple defines as screens that have a higher
pixel density than their previous models. The goal of Retina displays is to make the display of text and images extremely crisp, so pixels are
not visible to the naked eye. All 15-Inch Retina Display MacBook Pro models have a 15.4" color display with 2880x1800 native resolution at 2
20 ppi and all 13-Inch Retina Display MacBook Pro models (A1425, A1502) have a 13.3" color display with 2560x1600 native resolution at 22
7 ppi. Since Docker writers are using MacBooks, let's assume that all of us are using Retina display. This means that the resolution will be
higher than non retina and might appear smaller if viewed on an older laptop that does not have this feature. The docs have been tested on a
newer HP laptop and there was no discernible difference in viewing screenshots.

Screenshots

After gathering comments based on samples, this style is the winner:

Notice the thin gray border on three sides, and the wave on the bottom which mimics the wave at the end of our doc pages and reinforces
that design element. People liked this look best as they preferred a minimal border with no distractions to the doc or screenshot. They
understood that the edges of the screenshot were cut off and felt they didn't need an edge such as a tear to let them know this. Notice the
various callouts: arrow, callouts, and numbers. They appear best with a slight shadow which adds weight and makes it appear that the
elements are on of the doc, and not a part of it. If you are going to use multiple elements, it also makes sense to create them using thetop
same color.

Use Snagit to achieve this look.

The Effects Border is and size (thickness) is 2pts.gray78 #c7c7c7
The Effects Edges is Wave at size 5 pts only on the bottom.
You can save your settings as a style to quickly apply them.

Other considerations:

First resize your screen so that while there is still white space, it is minimized without the screen looking weird.
Leave enough space for the docker logo on the left.
When editing your screenshot, first crop out non-essential information such as your bookmarks and URL.
No need to take a large screen shot to illustrate your point. It's better to have additional screenshots or use the torn page tool.
After applying the border effects, think of using other tools such as arrows or callouts with text to emphasize your point. To keep in
the style of the screenshot, use arrows/callouts in a contrasting color such as red or orange and minimal borders as make sense to
the screenshot. Shadows can be optional depending on what else is in the screenshot.
If you are cropping a screenshot on all four sides, ensure that there is some context so users understand what you are trying to
show.

Graphics or charts
It doesn't matter which tool you use, it can be Snagit or Confluence's Gliffy. If you choose Gliffy, here's the documentation to get you
started: . You can also type in the bracket "[" while in edit mode to bring up a list.https://www.gliffy.com/user-manual/?productId=1

When creating graphics, the current preference is to make your graphics:

Borderless, as it's less distracting.

http://www.color-hex.com/color/c7c7c7
https://www.gliffy.com/user-manual/?productId=1

In "soft" colors that compliment the UI when possible.
With text, when it's used in a sans serif font for easy reading.
Use stronger (bolder) colors to draw a readers eye to a specific area.
Ensure to label your parts.
Use a legend when there are many parts.

Here is an example:

I have included the text in this example to show you the actual size of the graphic.

Work to be done

Address websafe colors - IN PROGRESS
Include info for cutouts, callouts, and numbered bullets - IN PROGRESS
guidelines for legends
definitive font guidelines for text?
match new doc UI for branding purposes

Other Books, Blogs, and Bibliostuff
It is really smart to have a subscription to . Save a tree and invest in yourself at the same time.Safari Books Online

Really good books to have (add your own)

Fast Reference Information design Best book on writing

https://www.safaribooksonline.com/

The Handbook of Technical
Writing
by Gerald J. Alred et al.
Link: http://amzn.com/14576755
28

How to Make Sense of Any Mess:
Information Architecture for
Everybody
by Abby Covert
Link: http://amzn.com/1500615994

The Sense of Style: The Thinking
Person's Guide to Writing in the 21st
Century

by Steven Pinker
Link: http://amzn.com/0143127799

Minimalism Beyond the Nurnberg
Funnel (Technical Communication,
Multimedia, and Information Systems)

by John M. Carroll
Link: http://amzn.com/026203249X

Other resources blogs and such

http://worrydream.com/
http://alistapart.com/
https://m.signalvnoise.com/
http://99u.com/
http://www.measuringu.com/

Tips, Tricks, and Tools

Convert Markdown to PDF

Grip Tool

Grip Tool

One quick way to print Markdown page in a nice PDF is a tool called . It is super fast and captures images well.grip

Work with docs continuous integration (CI) tests

To retest a failed documentation build:
Comment on the PR, and say " ".test this please
There is a Jenkins plugin that sees that comment and retests your build, and then updates the Jenkins build status. See:https://wiki.jenkins-ci.org/
display/JENKINS/GitHub+pull+request+builder+plugin

Jenkins password for private repositories

Username Password

docs-team cDaxUBLGuLm8hjAJ

DOC Strategy Projects
Improve documentation usability
Revise documentation release process
Validate documentation files on commit

Improve documentation usability
Our current documentation skin was derived from the site as part of a push for Dockercon. It didn't go through the designwww.docker.com
iteration we wanted it to. This project is designed to address that issue among others. In particular, the goals of this project are to:

Have a full design iteration on the docs skin
Support product-specific layouts
Improve the fonts and general layout of content
Ensure support multiple media formats (Computer, phone, tablet)
Ensure the site is usability tested

http://amzn.com/1457675528
http://amzn.com/1457675528
http://amzn.com/1500615994
http://amzn.com/0143127799
http://amzn.com/026203249X
http://worrydream.com/
http://alistapart.com/
https://m.signalvnoise.com/
http://99u.com/
http://www.measuringu.com/
https://github.com/joeyespo/grip
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
http://www.docker.com

Tasks addressing this situation

Revise documentation release process
Our current release process relies on releasing all the documentation at once to an S3 bucket. This is insufficient for the number of projects and
the frequency of their release.

This project is being tracked in
 - DOCS-237 Automated Documentation publishing

TODO

The release Timeline is set by Core Release 1.10

docs.docker.com User Stories
One of strategic goal of the documentation team is to improve the
documentation release process We want to support release more.
frequently and at a more granular level. We have two initiatives in
place already to support and prepare for this, the Validate

 and .documentation files on commit Improve documentation usability
 Given the number of projects and the variety of products, we want
to make sure we have a good understanding of the requirements for
publishing or releasing the documentation.

PURPOSE: Collect user stories related to constructing
documentation content, building the content locally, and/or
publishing documentation.

GOALS: The following

Build a list of requirements for Docker's documentation
release process.
Add to or expand requirements of other strategic projects if
necessary

Open Source Documentation Contributor
Click for a user description...

An open source contributor, often a first time contributor. Likely to be unfamiliar with or new to Docker.

I want to see a change I made published to within a day of when it is mergeddocs.docker.com

I want to use an editor I am familiar with to write documentation.

I don't want to spend a lot of time learning a new tool so I can write documentation.

I don't want to create a new login to create documentation.

I want to write plain GitHub markdown so that I can use GiHub docs like a web

I want to get may changes into a Docker repository with a pull request

I want to build the documentation on my machine so I can test what I write.

I want to be able to do all the docs processes on my Windows machine.

I want to be able to do all the docs process on my Mac.

Docker Technical Writer
Click for a user description...

An employee or contractor to Docker. Experienced writing documentation for software companies. Used to an automated authoring
environment — the equivalent of a developer's IDE.

Key Summary T Created Updated Due Assignee Reporter P Status Resolution

No issues found

https://docker.atlassian.net/browse/DOCS-237?src=confmacro
https://docker.atlassian.net/wiki/display/PROJECTS/Core+Release+1.10
http://docs.docker.com
https://docker.atlassian.net/secure/IssueNavigator.jspa?reset=true&jqlQuery=filter+%3D+docs-redesign+&src=confmacro

I want to be sure my changes don't break the documentation build

I want a global variable that I can put in which stands for the current release version. For example, if I am writing a file in the
compose project, I should be able to put in this variable. Then, at build time, the build system should automatically replace this
variable for me to the latest version.

I should be able to define my own global variables within a project.

I should be able to define global variables in one project and use them in another.

I should be able to use a global variable any format that the authoring platform supports. For example, I might want to use a global
variable in a code example.

I want to rename or move a file in a directory structure and redirect the old file redirect.

I want to be able to run a local copy of the docs server and see my changes reflected locally by refreshing the page (must work on
)OSX/Windows

I want to be able to write some documentation source in one file and include it into another documentation source file (includes). I'd
like to do this within my project or across projects.

I want to be able to be able to define a set of conditions that I can use in the source files (conditional text). I'll use these conditions to
specify under what conditions to publish different parts of the source file.

Docker Engineer or Engineering Team Member
Click for a user description...

An employee or contractor to Docker. Doesn't have a lot of time to learn the ins and out of Markdown. Unfamiliar with Hugo static file
generator. Inexperienced writing docs for enterprise software. Unfamiliar with an automated authoring environment.

I want to be able to publish our product documentation

I want to know that the latest documentation is correct - or at least know when code changes have affected examples.

I want to be able to include the output of a command (ex: `docker-compose --help`) in the docs in an automated fashion

I want to be able to generate API documentation for display on docs.docker.com

I want the man pages and command line documentation to be kept in sync, preferably by coming from the same source files

I want man pages to be an automatic part of all projects with a cmdline

I want to be able to review documentation changes the same way I review code (github workflow)

I want our docs tools to play well with existing doc standards (godoc, github) and to not push breaking requirements on code (golint)

I want to be able to ship docs for the correct version of my product with the product itself

docs.docker.com Reader
Click for a user description...

Anyone reading the documentation. This person is trying to answer a question or solve a problem. Quickly finding information is
important. This person also wants metadata about the documentation to answer questions like "Am I reading the right thing".

I want to be able to search the documentation from a search bar in the documentation site

I should be able to tell what version of the product the documentation I am reading is written for.

I want to be able to tell the last time a page was edited

I want to be able to easily tell someone about, annotation or update existing pages, without needing to login or register for an
account, learn git, or deal with the strange signing process.

I want to look at content from older releases of a product.

I want to see quickly what's new in the current release (or see in which release something was added)

I want to see documentation for just the product I'm using (e.g. only docker-compose, swarm, engine, docker-machine)

I want to be able to download an offline copy of the documentation (in epub, PDF format)

I want to be able to read the documentation on a website

I want code examples to be better readable, without scrolling

I want to be able to copy / paste examples

Documentation Release Engineer

Click for a user description...

This person is responsible for building the tools for publishing the documentation and also for publishing the documentation.

I want to publish a new version for just a single product

I want to publish an update to a single page in an existing version

I want to archive an existing version of the product

I want to generate PDF of a set of product documentation

I should be able to rollback to a particular version of the documentation for any product.

I should be able to rollback to a particular version of a page.

I want to be able to authorize users to publish documentation for a project or as a whole

I want to be able to lock users from publishing per project or as a whole

Technical Documentation Manager/Docker Manager
Click for a user description...

This person is responsible for smooth operation and delivery of the documentation set. This person wants data about the
documentation including how it was delivered and how it is being used.

Keep an audit log of what was published, who published it, and when

Google Analytics should be imbedded in each document source page

I want to be able to provide writers and contributors with documentation on how to create source content

I want to be able to provide user with instructions on how to publish

Documentation Release Tooling Requirements

Target release 1.10

Epic - DOCS-237 Automated Documentation publishing
TODO

Document status DRAFT

Document owner Mary Anthony

Designer

Developers Sven Dowideit

QA

Goals

Support multi-architecture documentation
Support per-product release cycles

Background and strategic fit

We expect to provide ...tBD

Assumptions

https://docker.atlassian.net/browse/DOCS-237?src=confmacro
https://docker.atlassian.net/wiki/display/~mary
https://docker.atlassian.net/wiki/display/~SvenDowideit

Requirements

Title User Story Importance Notes

1 GitHub
Support

I want to write plain GitHub markdown so that I can use GiHub
docs like a web
I want our docs tools to play well with existing doc standards
(godoc, github) and to not push breaking requirements on code
(golint)

 Feature implementations should avoid breaking linking
between pages in a GitHub project
Feature implementations should support display of images
within a GitHub project
Feature implementations should not surface into the GitHub
visual representation of a page

2 Changes
reflected on
site

I want to see a change I made published to withidocs.docker.com
n a day of when it is merged because I like to see the impact of my
contribution. When I do, I feel like I made a difference and it
inspires me to contribute more.

 This requires a better cherry pick feature; right now
cherry-picks are manual
Since the cherry pick feature increases the risk of bad
changes being pushed, DEPENDS ON a rollback function

3 Validation
support

I the documentation build to report errors present in my source
that break the documentation build.

For instance links that don't resolve, markdown that isn't
formatted properly, images that are missing, and other things.
An automated provides confirmation of a manual check and also
allows me as a writer to work more efficiently.

 CI Validation should run for local builds pull request and fail
on error
CI Validation should run for each pull request and fail on
error

4 Global Variable I should be able to define my own global variables within a project
and use them in place of key terms.

Good candidates for global variables are product or feature
names, operating system, product versions, and current year.
Using Global variables allows me to quickly upgrade a document
for a particular product version or operating system. For
example, if I am writing a file in the compose project, I should be
able to put in this variable. Then, at build time, the build system
should automatically replace this variable for me to the latest
version.

I should be able to define docker-wide variables and use them
across projects.
I should be able to use a global variable any format that the
authoring platform supports.

For example, I might want to use a global variable in a code
example.

 This would be a key-value pair
The variable should be usable in any kind of paragraph
format (code, heading) or font format (bold, italics,
preformatted)
We should support cross-project global variables; maybe by
means of a build variables file

5 Authoring
Environment

I want to use an editor I am familiar with to write documentation.
I don't want to spend a lot of time learning a new tool so I can write
documentation.
I don't want to create a new login to create documentation.
I want to get may changes into a Docker repository with a pull
request
I want to be able to review documentation changes the same way I
review code (github workflow)

 We shouldn't require a specialized authoring environment;
currently users can contribute with a text editor and an
Docker installation alone
We shouldn't require special pull requests for documentation
contributors; we should leverage the current open source
process for pull requests

6 Local Builds I want to build the documentation on my machine so I can test
what I write and make sure it presents well.
I want to build the documentation on my machine so I can test
what I write.
I want to be able to do all the docs processes on my Windows
machine.
I want to be able to do all the docs process on my Mac.

 Users may be writing on Mac OSX, Windows, and Linux
As we expand to multi-architecture there may be more
platforms
Currently we have this situation:

Local builds are working as unit tests. And running
Hugo checks which is Sven's patch. he is going to
update that to be off the latest release
Need a JIRA for this
Integration tests are happening on the PR checkin to
GitHub these checks include:

Markdown linter is being run
Linkchecker is not running; still in development;
Sven runs it on the stage build running from
checkins. Sven is working on this and will let us
know. This is definitely finding this on an actual
S3. When you do a Hugo server what you get is
only marginally related to what you get if you do
to Hugo server – Hugo serve is not showing what
happens on an actually deployed server. (This is
fixed by moving yo using nginx - as the local
build webserver is identical to the stage&prod
one)
Need a JIRA to track for the Linkcheck

7 Redirect
support

I want to rename or move a file in a directory structure and create
a redirect from the old to the new file. This is good because it does
not break Docker's old SEO.

 Within our own systems we should not use redirects.
Instead, we should fix our links to point to the new file.
Links to a file that has been redirected should provide a
warning in the build system.

Check redirects from within Compose. / Maybe start
release from AWS instance rather than a virtualbox
machine

http://docs.docker.com/

8 Live refresh I want to be able to run a local copy of the docs server and see my
changes reflected locally by refreshing the page (must work on
OSX/Windows)

 This is the Hugo watch function. Works in the Linux case
fine. Does not work on Mac or Llnux where the
DOCKER_HOST is a vm
Maybe new Docker Volumes allows this to work

9 Reuse/Includes I want to write a common text and reuse or include it in multiple
other documentation source files.

10 Conditional
Publishing

I want to be able to write content that contains sections that are
define a setdisplayed or hidden depending on certain conditions.

of conditions that I can use in the source files (conditional text). I'll
use these conditions to specify under what conditions to publish
different parts of the source file.

 Examples in other products
Drupal
Framemaker
Madcap Flare

11 Version I want to be able to ship docs for the correct version of my product
with the product itself
I should be able to tell what version of the product the
documentation I am reading is written for.
I want to be able to under the schema of Docker's doc URI

 The documentation for a particular product should display
the version of the product the documentation is assoicated
with on the page (either page layout or URL is fine)

We need to take back up the URL Discussion for
Documentation Site URI Layout

 - DOCS-251 fetch_content.py needs
 to get product-version from product repo

TODO
- get the prod-version info from the prod repo and put into
build_info.json

12 Metadata I want to be able to tell the last time a page was edited/changed Needs a UX

 - DOCS-252 fetch&store each page's
metadata TODO

13 Page
Comments

I want to be able to easily tell someone about, annotation or
update existing pages, without needing to login or register for an
account, learn git, or deal with the strange signing process.

14 Archive
support

I want to look at content from older releases of a product. This one is directed at having a facility in the doc site itself
for presenting archived versions

 - DOCS-248 Solution for archived
 docs TODO

needs a UX

15 Change control I want to see quickly what's new in the current release (or see in
which release something was added)

 New in the product
New in the documentation
Interim solution maybe to use the GiHub repo

16 Search I want to be able to search the documentation from a search bar in
the documentation site

 Google search is in the new layout design

Verify how it looks with multiple products /version

17 Code
examples

I want code examples to be better readable, without scrolling
I want to be able to copy / paste examples
I want to know that the latest documentation is correct - or at least
know when code changes have affected examples.
I want to be able to include the output of a command (ex:
`docker-compose --help`) in the docs in an automated fashion

18 Generate
command docs

I want the man pages and command line documentation to be kept
in sync, preferably by coming from the same source files

19 Generate API
docs

I want to be able to generate API documentation for display on doc
s.docker.com

 DTR is already there
Docker Python API is already there

20 Man pages I want man pages to be an automatic part of all projects with a
cmdline
I want the man pages and command line documentation to be kept
in sync, preferably by coming from the same source files

21 Publish I want to publish a new version for just a single product
I want to publish an update to a single page into the latest
published version
I want to publish an update to one or more pages in an older,
archived version of the documenation
I want to archive an existing version of the product
I should be able to rollback to a particular version of the
documentation for any product.
I should be able to rollback to a particular version of a page.
Keep an audit log of what was published, who published it, and
when

 For 1.10 release the intention that "I" is Mary or Sven
see Publishing workflow

https://www.drupal.org/project/conditional_text
http://help.adobe.com/en_US/FrameMaker/9.0/Using/WSF778A159-48A7-4f26-B04E-79509DDB38E8.html
http://help.madcapsoftware.com/d2h3/Content/Condition_Tags/D2H/About_Conditions_D2H.htm
https://docker.atlassian.net/wiki/display/DOCSTEAM/Discussion+for+Documentation+Site+URI+Layout
https://docker.atlassian.net/wiki/display/DOCSTEAM/Discussion+for+Documentation+Site+URI+Layout
https://docker.atlassian.net/browse/DOCS-251?src=confmacro
https://docker.atlassian.net/browse/DOCS-252?src=confmacro
https://docker.atlassian.net/browse/DOCS-248?src=confmacro
http://docs.docker.com
http://docs.docker.com
https://docker.atlassian.net/wiki/display/DOCSTEAM/Publishing+workflow

22 Authorize
publishers

I want to be able to publish our product documentation
I want to be able to lock users from publishing per project or as a
whole
I want to be able to lock users from publishing per project or as a
whole

 Requires that we have 23 Recovery/Rollback in place

23 Recovery I should be able to rollback to a particular version of the
documentation for any product.
I should be able to rollback to a particular version of a page.

 May or may not come out by 11
see (make a PR to the docker/docs-htmlPublishing workflow
repo, validate and merge to GO-LIVE)

24 Output/Display I want to be able to read the documentation on a website
I want to see documentation for just the product I'm using (e.g.
only docker-compose, swarm, engine, docker-machine)

 The new layout of the documentation is product-specific

25 PDF support I want to be able to download an offline copy of the documentation
(in epub, PDF format)
I want to generate PDF of a set of product documentation

26 Audit trail Keep an audit log of what was published, who published it, and
when

 We need that before we can do the publish
Use the commit history and Pull Request history of the dock

docker/docs-sources ander/docs.docker.com,
docker/docs-html repositories for test/stage, and repository
tagging for each live site

27 Analytics Google Analytics should be imbedded in each document source
page

 Supported in current version of the product

28 Support I want to be able to provide writers and contributors with
documentation on how to create source content
I want to be able to provide user with instructions on how to
publish

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

Not Doing

I want to use an editor I am familiar with to write documentation.
I don't want to spend a lot of time learning a new tool so I can write documentation.
I don't want to create a new login to create documentation.
I want to get may changes into a Docker repository with a pull request

Validate documentation files on commit
Traditional authoring environments validate a file when the file is saved. Depending on the environment, the validation may be very strict (DITA)
or basic (Framemaker, Drupal, Confluence). What they have in common is they have features that automatically validate the file content. The
analogy is to a compilation with code. Validation automates many things for a writer.

Checks the file contain valid markup
Automatically numbers procedures and headings
Ensures the cross-references (links between files a company's documentation) in the file resolve
Ensures links to external resources resolve
Checks the markup logical (H1 is only followed by H2)
Includes exist and resolve in the documentation

These kinds of automated validation may be done while a user writers, on a documentation save, or when a documentation set is generated.

An editor + Markdown doesn't automate any documentation validation. Instead, it relies on a human being to manually and personally validate.
 As a result, the checks are highly error prone.

Tasks addressing this situation

Develop checks that ensure markdown files are validated when users check them into a repository.

https://docker.atlassian.net/wiki/display/DOCSTEAM/Publishing+workflow

Doc Build, Validation, and Release
Releasing Docs: Illustrated and explained
Build the Documentation
Documentation pull request checkers (Validation)
Adding Documentation PR validation to a GitHub repository
Branching and products

Releasing Docs: Illustrated and explained
This page explains the components of and process for releasing documentation both for an official release and as to the existingupdates
docs.docker.com site.

Understand what is involved

The documentation source files are with the documentation product's code source files. This has an advantage:co-located

When new features are added to a product the documentation is also added; if done in a single PR it can be reverted if necessary in
a single PR
Feature code and documentation are reviewed simultaneously in a single rather than duplicated effort
Easier for code contributors to find the documentation related to a product they are working on

There is a tradeoff of course. Some disadvantages are:

Documentation for new features can lag or require updates after a is cut. release candidate(RC) branch
Small documentation changes require PRs that add to a product's PR review workload
Documentation management must manage documentation across multiple project repositories

List of projects that feed docs.docker.com:

 Repository Description

1 https://github.com/docker/docker Docker Engine. Public.

Docker CS. Commercial

2 https://github.com/docker/distribution Docker Registry. Public.

3 https://github.com/docker/swarm Docker Swarm. Public.

4 https://github.com/docker/machine Docker Machine. Public.

5 https://github.com/docker/compose Docker Compose. Public.

6 https://github.com/docker/notary Notary. (TBD)

7 https://github.com/docker/dhe-deploy Content only for DTR. Private.

Key Summary T Created Updated Due Assignee Reporter P Status Resolution

DOCS-228 add a junit.xml file
output to
markdownlint,
linkchecker and
hugo

Nov 23,
2015

Nov 24,
2015

Sven
Dowideit

Sven
Dowideit

IN PROGRESS Unresolved

DOCS-186 defuse hard-coded
links to
docs.docker.com

Sep 23,
2015

Jan 20,
2016

Oct 23,
2015

Sven
Dowideit

Mary
Anthony

SELECTED
FOR

DEVELOPMENT

Unresolved

2 issues

https://docker.atlassian.net/wiki/display/DOCSTEAM/Build+the+Documentation
https://docker.atlassian.net/wiki/pages/viewpage.action?pageId=42436402
https://docker.atlassian.net/wiki/display/DOCSTEAM/Adding+Documentation+PR+validation+to+a+GitHub+repository
https://docker.atlassian.net/wiki/display/DOCSTEAM/Branching+and+products
https://www.wordnik.com/words/co-locate
https://github.com/docker/docker
https://github.com/docker/distribution
https://github.com/docker/swarm
https://github.com/docker/machine
https://github.com/docker/compose
https://github.com/docker/notary
https://github.com/docker/dhe-deploy
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/secure/IssueNavigator.jspa?reset=true&jqlQuery=filter%3Ddocs-validate+&src=confmacro

1.

2.

3.
4.
5.

6.
7.

1.

2.

3.

4.

5.
6.
7.

8 https://github.com/docker/hub2-demo Hub Private docs

9 https://github.com/kitematic/kitematic Kitematic. Public

10 https://github.com/docker/opensource Open source

11 https://github.com/docker/tutorials Getting startet

New Product Release

Purpose: Publish new product documentation and updates to
existing feature documentation.

As features are added, code and doc changes add into a
product's branch.docker/project master
When the engineering team is ready, the cut an RC branch
from that includes code and documentation.master
Engineer creates a branch release
Engineer updates the branch from .docs release
The documentation team publishes staging.docs.docker.c
om.
Release watchers verify the content on the staging site.
The documentation team publishes site.docs.docker.com

Between Release Documentation Updates

Purpose: Publish updates to existing feature documentation NOT a
 new feature documentation. ny

As new features are added, code and doc added
into a product's docker/project master branch
As documentation is updated for existing features
the change is added to a product's docker/project

 branch.master
At this point, contains documentation for master ex

 and features co-mingled.isting new
Writer copies a documentation update for existing

 from into the branch with afeature master docs
cherry pick
Build and pushed to stage.docs.docker.com
Interested party verifies staging
The documentation team publishes docs.docker.c

 site.om

Repository Description

https://github.com/docker/docs-base Contains

The documentation theme (look and feel)
The documentation splash page
The release-notes page

https://github.com/docker/docs.docker.com Contains the build scripts for building and publishing documentation

https://github.com/docker/hub2-demo
https://github.com/kitematic/kitematic
https://github.com/docker/opensource
https://github.com/docker/tutorials
http://docs.docker.com
http://docs.docker.com
https://github.com/docker/docs-base
https://github.com/docker/docs.docker.com

	Documentation Team
	REPORT an Issue or Problem
	What is Docker?
	You meant to say Docker Engine right?
	Images, Containers, and Docker oh my!
	Docker Ecosystem: Beyond the Engine

	Use Git and GitHub
	Set up Git on your Mac
	Git/GitHub Glossary and Illustrated Reference
	Enable a virtual machine
	Create a repository clone on your local machine
	Daily update and rebase the master branch on your local repository
	Create and checkout a new feature branch
	Checkout an existing feature branch
	Verify your work with the make docs command
	How to check your work after a make docs
	Add a new file or folder to Git tracking
	Push changes to a fork
	Rebase, squash, and push to your fork
	Fixing merge conflicts while rebasing
	Create a pull request
	Participate a pull request review
	Test or carry another user's code branch
	Understand when and how to merge a pull request
	Backing out changes you already pushed to GitHub
	How to cherry-pick a commit for release
	Git Going Cheesheet
	FAQ about writers and Git
	Troubleshooting Git
	Correct a Permission Denied (publickey) error
	Correct a TLS-enabled daemon error

	Checkout a remote branch from GitHub

	Guidance and Style
	Page construction and format
	Style Guide
	Terminology
	Guidelines for screenshots and illustrations
	Other Books, Blogs, and Bibliostuff

	Tips, Tricks, and Tools
	Convert Markdown to PDF
	Work with docs continuous integration (CI) tests

	DOC Strategy Projects
	Improve documentation usability
	Revise documentation release process
	docs.docker.com User Stories
	Documentation Release Tooling Requirements

	Validate documentation files on commit

	Doc Build, Validation, and Release
	Releasing Docs: Illustrated and explained

