Use Git and GitHub

Set up Git on your Mac

Git/GitHub Glossary and lllustrated Reference

Enable a virtual machine

Create a repository clone on your local machine

Daily update and rebase the master branch on your local repository
Create and checkout a new feature branch

Checkout an existing feature branch

Verify your work with the make docs command



How to check your work after a make docs
Add a new file or folder to Git tracking
Push changes to a fork
Rebase, squash, and push to your fork
Fixing merge conflicts while rebasing
Create a pull request
Participate a pull request review
Test or carry another user's code branch
Understand when and how to merge a pull request
Backing out changes you already pushed to GitHub
How to cherry-pick a commit for release
Git Going Cheesheet
FAQ about writers and Git
Troubleshooting Git
® Correct a Permission Denied (publickey) error
® Correct a TLS-enabled daemon error
® Checkout a remote branch from GitHub

Set up Git on your Mac
When to do this: Once, to get Git set up and
configured on your Mac.

Mac comes with Apple's Git
version. This sucks. Get the
real Git.

Prerequisites: A Mac.

—_

. Create a GitHub account.
2. Install Git correctly.
3. Install XCode on your Mac.

We used to do these in reverse order, but installing Git first prevents you from having to clobber the potentially-bad version
of Git that ships bundled with XCode.)

4. Generate an SSH key and add it to GitHub ad it to both your GitHub profile and the ssh-agent.
5. Change to your /tmp directory.

$ cd /tmp

We all use a profile which originates from Jessie Frazelle one of Docker's top developers. This profile includes some cool prompt
helpers for git.
[ BON ) docker — ~/repos/docker — bash — 136x18

at meepers in ~/sandbox/share/mary
~/repos

at meepers in ~/repos
docker

at meepers in ~/repos/docker on

We recommend you get this profile.

6. Clone the profile set from moxiegirl.


https://help.github.com/articles/generating-ssh-keys/
https://git-scm.com/downloads

8. Copy the profile files to yours.
This will overwrite any existing profile files you have.

wn
Q
T
*
l
~

9. Close any open terminals and reopen them.

Git/GitHub Glossary and lllustrated Reference

You need this if you are new to Git or just for refresher.

Docker Repository Your Fork
Remote Name: upstream Remote Name: origin
LA -
o o e T
Typical actions:
e <€—New pull request ——
8] B cwmar Compare
LN —— S ——
- W g by v v et u
. - .
Located: GitHub Located: GitHub
Owner is: docker Owner Is: you
Local clone of your Fork
*  Typical commands:

Typical commands: s i git add filename

git remote add upstream URL SINEC e D git commit -s -m "message”

git fetch upstream CONTRIBUTING. MAINTAINERS it push origin

git rebase upstream/master ke m‘;;;le git rebase -i upstream/master

ki README . md
Do rfil ROADMAP .. nd
Packerfil
Located: Your machine's file system
Owner is: you
Glossary

Term Description
clone n. A clone is a copy of a repository that lives on your computer instead of in GitHub.

v. The act of copying a repository with the Git clone command.

With your clone you can edit the files in your preferred editor and use Git to keep track of your changes without having to be
online. It is, however, connected to the remote version so that changes can be synced between the two. You can push your
local changes to the remote to keep them synced when you're online.


https://help.github.com/articles/github-glossary/#remote

branch

checkout

commit

diff

fetch

fork

Git
GitHub
hash

HEAD

LGTM

master

merge

pull

pull request

push

rebase

ref

remote

repository

A branch is a version of a repository code. It does not affect the primary or master branch allowing you to work freely
without disrupting the "live" version. When you've made the changes you want to make, you can merge your branch back
into the master branch to publish your changes. Also, a Git command for managing branches.

n., A commit, or "revision", is an individual change to a file (or set of files). A Git command that saves a change in a
repository

It's like when you save a file, except with Git, every time you save it creates a unique ID (a.k.a. the "SHA" or "hash") that
allows you to keep record of what changes were made when and by who. Commits usually contain a commit message which
is a brief description of what changes were made.

n., The difference in changes between two commits. Also, a Git command that shows changes between commits, commit
and working tree, etc

A git command to get the latest changes from an online repository (like GitHub.com) without merging them in. Once these
changes are fetched you can compare them to your branches in your local clone and merge these changes.

A fork is a personal copy of another user's repository that lives on your GitHub account. Forks allow you to freely make
changes to a project without affecting the original. Forks remain attached to the original, allowing you to submit a pull request
to the original's author to update with your changes. You can also keep your fork up to date by pulling in updates from the
original.

Git is an open source program for tracking changes in text files. It was written by the author of the Linux operating system.
A social coding cloud application is built on top of Git.
See SHA or commit.

A reference to the currently checked out commit. In normal states, it's actually a symbolic reference to the branch you have
checked out - if you look at the contents of . git/HEAD you'll see something like "ref: refs/heads/master". The branch
itself is a reference to the commit at the tip of the branch

Looks Good to Me — a short hand way for a pull request reviewer to indicate approval of a change. Documentation changes
require the approval of two doc maintainers in addition to technical reviewers.

The main branch. Analogous to Subversion's trunk.

A Git command that takes the changes from one branch (in the same repository or from a fork), and applies them into
another. The GitHub interface also has a Merge action which you can perform once your pull request is fully reviewed and
approved.

A Git command for fetching in changes and merging them. For instance, if someone has edited the remote file you're both
working on, you'll want to pull in those changes to your local copy so that it's up to date. Writers normally don't do use this
command.

A GitHub feature that allows you to submit changes from your fork back to the original repository owner. Pull requests allow
contributors to review, comment, and suggest changes before a merge.

Pushing refers to sending your committed changes to a remote repository such as GitHub.com. For instance, if you change
something locally, you'd want to then push those changes so that others may access them.

A merge without the annoying merge commit. This is how SVN always works! | still can't figure out whether rebase is
something that everyone should use all the time or that advanced users should use for special situations. Also, a Git
command to forward-port local commits to the updated upstream head.

A reference to a single commit. This is a pointer. If you think of the commit history like a graph, then this points to a single
node in that graph. It could be a tag, or it could be the tip of a branch, or it could be HEAD, the current state of your
repository.

In actual fact, a branch is simply a pointer and nothing more. The actual tree structure that represents the "branch" is the
commit graph, and the branch itself is just a pointer into that graph. Each repository has its own set of refs which are not
necessarily shared with other repositories.

An instance of a repository. You can pull changes from or push changes to remotes. origin is the your fork (owned by you)
that lives on GitHub and allows you to work without impeding with others. When you clone your fork, Git automatically
creates a remote for it called origin inthe .git/config file. upstream is the "source of truth" the repository owned by
the Docker on GitHub.

A repository contains all of the project source files (including documentation), and stores each file's revision history.
Repositories can have multiple collaborators and can be either public or private.


https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-diff
http://GitHub.com
http://GitHub.com
https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/git-rebase

SHA A unique ID (a.k.a. the "SHA" or "hash") for a commit.

ssh key SSH keys are a way to identify yourself to an online server, using an encrypted message. It's as if your computer has its own
unique password to another service. GitHub uses SSH keys to securely transfer information from GitHub.com to your
computer.

tip The last commit on a branch, i.e. the most recent commit, is referred to as the fip of that branch, or sometimes the head. This

is a leaf in the commit graph, if you like to think in terms of graphs.

upstream When talking about a fork, the original repository is often referred to as the "upstream", since that is the main place that other
changes will come in from. The fork you are working on is then called the "downstream".

Enable a virtual machine

When to do this: As needed. A virtual machine allows you to run Docker CLI commands on your local system.

Prerequisites: ® Running on a Mac or Windows machine.
® Docker Machine is installed either through Docker Toolbox or directly.

1. List the available machines.

$ docker-machine 1ls
NAME ACTIVE DRIVER STATE e
default virtualbox Stopped e

$ docker-machine create --driver virtualbox default

Creating VirtualBox VM...

Creating SSH key...

Starting VirtualBox VM...

Starting VM...

To see how to connect Docker to this machine, run: docker-machine env
default

.........................................................................................................................................................................

If you had to create a machine, you can skip the next step as your machine is already started.
2. Start a machine.

$ docker-machine start default

(default) Starting VM...

Started machines may have new IP addresses. You may need to re-run the
“docker-machine env™ command.

3. Get the environment configuration for the machine you started.


http://GitHub.com

$ docker-machine env moxie

export DOCKER TLS VERIFY="1"

export DOCKER_HOST="tcp://192.168.99.100:2376"

export DOCKER_CERT_ PATH="/Users/mary/.docker/machine/machines/default”
export DOCKER MACHINE NAME="default"

# Run this command to configure your shell:

# eval "$(docker-machine env default)"

.........................................................................................................................................................................

Create a repository clone on your local machine
Click to enlarge

e hgsuze
MrehKen 3 boe

When to do this: Infrequently. When you first
start working on a repo or if you
need to start over with a “fresh”
repo

Prerequisites: A GitHub account.

The procedure below assumes you are cloning the docker/toolbox repository. So, make sure you sub in your repo for toolbox in the
examples below.

1. Go to the Docker repository on Github.
2. Fork the docker/repository to your GitHub user account.
3. In a shell back on your system, change directory (cd) into your ~/repos directory.

4. Clone your fork to your repos directory.
In the repo URL, your GitHub username should appear, in this example the username is moxiegirl.

....................................................................................................................................................................

$ git clone git@github.com:moxiegirl/toolbox.git
Cloning into 'toolbox'...

<snip>

Checking connectivity... done.

5. Change directory into your new repository.



....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

$ cat .git/config
[core]
repositoryformatversion = 0
filemode = true
<snip>
[remote "upstream"]
url = git@github.com:docker/toolbox.git
fetch = +refs/heads/*:refs/remotes/upstream/*
pushurl = no_ push

9. Editthe .git/config file in your favorite editor.
10. Add a fetch for pull requests:

11.

[remote "upstream"]

url = git@github.com:docker/toolbox.git

fetch = +refs/heads/*:refs/remotes/upstream/*

fetch +refs/pull/*/head:refs/remotes/upstream/pull/*
pushurl = no_ push

Line 4 is what allows you to pull another user's code branch.
Initialize the local repository by running a £etch of references for the upstream master, followed by a rebase, and push.

To do this, follow the steps in the next procedure, Daily update and rebase the master branch on your local repository (also shown
below, in short form).



$ git fetch upstream
From github.com:docker/toolbox

* [new branch] buc-branch -> upstream/buc-branch
* [new branch] build-test -> upstream/build-test
* [new branch] master -> upstream/master

$ git rebase upstream/master
Current branch master is up to date.

$ git push origin
Everything up-to-date

Daily update and rebase the master branch on your local repository
Click to enlarge

When to do this: Daily or before you create a
pull request. This ensures
your local master and fork are

e g

even with the upstream/master. e ) =
If you have a long-lived feature =
branch, you should rebase your e =

feature branch frequently.

Prerequisites: ® A repository clone on your
local machine.
® An upstream remote
defined.

This procedure gets the latest changes from the docker/repository master branch and updates your local clone with them. Then, you
push the changes to the master branch on your fork. Why do this? This ensures your local clone and fork are even with docker/reposit
ory master branch. Remember, while your working on your feature branch, other people are working on theirs and merging changes into
master. If your feature branch gets too far behind, you'll have a more complex merge to do when you are ready to send your changes with a
pull request.

1. Go to the root of your repository.

$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
nothing to commit, working directory clean

You should also have nothing to commit at this point. Remember, never work directly in your master branch.
3. If you are not on the master branch, checkout the master branch.

....................................................................................................................................................................

4. Fetch the latest references from the upstream remote.
The references detail any changes that went into the repository since you last did a fetch.



$ git fetch upstream
remote: Counting objects: 1986, done.
remote: Compressing objects: 100% (37/37), done.
remote: Total 1986 (delta 110), reused 93 (delta 93), pack-reused
1855
Receiving objects: 100% (1986/1986), 8.42 MiB | 1.63 MiB/s, done.
Resolving deltas: 100% (1064/1064), completed with 26 local

objects.
From github.com:docker/toolbox
* [new branch] dockercon-demopack ->
upstream/dockercon-demopack
* [new branch] master -> upstream/master
* [new tag] v1.7.0 -> v1.7.0
* [new tag] vli.7.1 -> vl.7.1
* [new tag] vl1l.8.0-rcl -> v1.8.0-rcl
* [new tag] v1l.9.1h -> v1l.9.1h
<snip>

$ git rebase upstream/master
First, rewinding head to replay your work on top of it...
Fast-forwarded master to upstream/master.

....................................................................................................................................................................

$ git push origin
Counting objects: 1936, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (675/675), done.
Writing objects: 100% (1936/1936), 2.78 MiB | 1.08 MiB/s, done.
Total 1936 (delta 1057), reused 1908 (delta 1031)
To git@github.com:moxiegirl/toolbox.git
5c0dbl6..cbd98e3 master -> master

Create and checkout a new feature branch

Click to enlarge

e kpsuEe Yorr%
MeekKas 4 doe .

When to do this: Before you start working and
usually after you have updated
your master branch.

Prerequisites: A repository clone on your local
machine.

1. Change to the root of your repository directory.



2. Checkout the master branch.
You can create a hew branch from any other branch. It is a good idea to start from an updated master branch because you'll be
sure to have latest changes.

3. Update and rebased your master branch.
You should do this every day.
4. Create a new code branch for your feature.

$ git checkout -b my-new-feature-branch
Switched to a new branch 'my-new-feature-branch'

The -b flag is what creates the new branch. Git also switches you into that branch.

Checkout an existing feature branch
Click to enlarge:

When to do this: Whenever you need to.
Typically, before you start

ecwn gz
“

working and usually after you e ) B
have updated your master bran T =
ch =i

Prerequisites: An existing feature branch in

your repository.

1. Change directory to the root of your repository.

2. Do a git status to see what branch you are currently on.
You may be on the branch you want already.

$ git status

On branch master

Your branch is up-to-date with 'origin/master’
nothing to commit, working directory clean

3. If you forgot your branch name, list your branches.



$ git branch -1
* master
my-new-feature-branch

Git places an * (asterisk) beside your current feature branch.
4. Checkout the branch you want to work on.

....................................................................................................................................................................

$ git checkout my-new-feature-branch
Switched to branch 'my-new-feature-branch'

....................................................................................................................................................................

Verify your work with the make docs command

When to do this: As you work to check the
layout.
Prerequisites: ® A feature branch with

some changes in it.

® You should be in the docs
directory of your
repository.

You have to periodically display your work in a browser to check the menus and layouts are correct.

1. Change to the root of your repository.

....................................................................................................................................................................

....................................................................................................................................................................

3. Modify or add files and folders.
4. Enable a VM if you haven't already.

....................................................................................................................................................................

Useful commands to know

docker-machine 1s

docker-machine start VM NAME
docker-machine env VM _NAME

eval "$(docker-machine env VM NAME)"
docker-machine IP VM NAME

....................................................................................................................................................................

6. Get the VM of the machine.



$ docker-machine ip moxie
192.168.99.100

....................................................................................................................................................................

$ make docs

docker build -t "docs-base:flickerbox-test" .

Sending build context to Docker daemon 647.2 kB

Step 1 : FROM docs/base:latest
---> 688feal5ab55

Step 2 : MAINTAINER Mary Anthony <mary@docker.com> (@moxiegirl)
---> Using cache
-—-> d343£f6510c26

Step 3 : RUN svn checkout

https://github.com/docker/docker/trunk/docs /docs/content/engine
-——> Running in 3679eaaef763

A content/engine/.gitignore

<snip>

338 pages created

287 non-page files copied

0 paginator pages created

0 tags created

0 categories created

in 1821 ms

Serving pages from /docs/public

Web Server is available at http://192.168.99.100:8000/ (bind
address 0.0.0.0)

Press Ctrl+C to stop

8. View the documentation by entering the VM”s IP address plus the port in your browser’s window.

O O n(1123)#dt x | EFlDocker, Inc % | M Re: [mact

X ,
€ C' [3 192.168.99.100:8000

amm AA— AA— _—— AA— A—

9. Check your changes in the browser.
10. lterate until perfect or you are satisfied.

What to look for when checking your local build

Check List Markdown Tips

In the source code, visually spot check for: Element

Every line should wrap at 80 characters
Run a spell check and verify there are no spelling errors.
Make sure your Markdown is correct

Sentences end in a period



If the change is more than paragraphs or it removes entire files: Fo o e '

Note
** **
Does the build report any errors that exist in the source ! > Note )
you are building ! > It's important

that you choose a
partitioning tool

Does the content on the page look correct

Are the head levels correct meaning H1 the page title,

and everything else H2 or lower that is available
Are notes in blue, indented, with a bold Note as an ISO so
> that the

Code is in code font inline and in code blocks
Boot2Docker VM can

Images are displaying properly be booted with it

Images are optimized

If you are adding entirely new files with a change, make sure the

metadata at the top of the file is correct. e,

? --------------------------------------------------------------------------- : i # Page title

' Example of metadata ; ## Head 2
<!l--[metadatal]> ' ### Head 3
+++ #### Head 4
title = "Plugins aApI" ¢+

ipti = "H t it

description . ow to . wr ? : Try not to go beyond 3 unless you absolutely have
Docker plugins extensions ! to

keywords = ["API, Usage,
plugins, documentation,
developer"]

[menu.main]

parent = "mn_extend"
weight=1

+++

<![end-metadata]-->

The metadata must be commented out correctly

The title value should be unique or the file should have
an identifier value

The keywords are appropriate to the content

The weight value places the page correctly in the
documentation menu

How to check your work after a make docs
Check List Markdown Tips

In the source code, visually spot check for: Element

Every line should wrap at 80 characters
Run a spell check and verify there are no spelling errors.
Make sure your Markdown is correct

Sentences end in a period

If the change is more than paragraphs or it removes entire files:



Does the build report any errors that exist in the source you Note

are building >
Does the content on the page look correct **Notex=
> L}
Are the head levels correct meaning H1 the page title, and ' . It's
everything else H2 or lower i 1lmporta
Are notes in blue, indented, with a bold Note I nt that
Code is in code font inline and in code blocks you
| disolavi | choose a
mages are displaying properly partiti
Images are optimized oning
If you are adding entirely new files with a change, make sure the ! tool
metadata at the top of the file is correct. : that is
e i availab
' ' i le as an
Example of metadata
; : ISO so
<!--[metadata]> i i > that
+++ i . the
title = "Plugins API" E ' Boot2Do
description = "How to write E { cker VM
Docker plugins extensions " i ! can be
keywords = ["API, Usage, i E booted
plugins, documentation, §  with
developer" ] § Lt
[menu.main] : '
parent = "mn_extend" i b
weight=1 ' R .
+++ g 4
<![end-metadata]--> ' .Page
i 5 i title
b § ## Head
: 2
L ##
The metadata must be commented out correctly H Head 3
The title value should be unique or the file should have E H#H#H
an identifier value : Head 4

The keywords are appropriate to the content

The weight value places the page correctly in the
documentation menu Try not to go beyond 3 unless
you absolutely have to

Add a new file or folder to Git tracking

Click to enlarge:
When to do this: Periodically as you work, N
commit your change. You L —
should create one commit for S
each unit of work on a feature.
For example, adding a new
page or drafting a procedure. ]

Prerequisites: ® aclone on your local
machine
® afeature branch in that
clone

This example shows you how to add a directory to the docs subdirectory in a branch. Each directory should have an index.md file, so this



example illustrates that as well.

1. Verify you are working in the correct branch.

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

$ git status
On branch my-new-feature-branch
nothing to commit, working directory clean

At this point your directory is empty. Git will only track a directory if it contains files.
5. Change to your new directory.
6. Add an index.md file to it.

....................................................................................................................................................................

The touch command is a simple Linux command for creating an empty file. You can also create one with your favorite text editor. At
this point git knows you have a new directory. It doesn't list the files only the directory because the directory and everything it
contains is untracked.

7. Check your status.



$ git status
On branch my-new-feature-branch
Untracked files:
(use "git add <file>..." to include in what will be committed)
./
nothing added to commit but untracked files present (use "git add"
to track)
$ cd ..
$ git status
On branch my-new-feature-branch
Untracked files:
(use "git add <file>..." to include in what will be committed)
cooldir/
nothing added to commit but untracked files present (use "git add"
to track)

Notice your status depends on where you are in the filesystem.
8. Add the directory to Git tracking.

....................................................................................................................................................................

....................................................................................................................................................................

$ git status
On branch my-new-feature-branch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
new file: cooldir/index.md

....................................................................................................................................................................

11. Push your changes
Your fork is on GitHub and is known to your local Git as the origin remote.

....................................................................................................................................................................

$ git push origin

fatal: The current branch my-new-feature-branch has no upstream

branch.

To push the current branch and set the remote as upstream, use
git push --set-upstream origin my-new-feature-branch

You have already noticed that Git tries to prevent you from breaking things by sending you messages as you work with the command
line. If this is the first time you've pushed this branch, then you have to set the upstream origin for the new branch. Git tells you this.
So, set the upstream for this branch as your fork.



$ git push --set-upstream origin my-new-feature-branch
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git

* [new branch] my-new-feature-branch -> my-new-feature-branch
Branch my-new-feature-branch set up to track remote branch
my-new-feature-branch from origin.

$ git push origin
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 404 bytes | 0 bytes/s, done.
Total 5 (delta 2), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
36abac3..2920840 my-new-feature-branch -> my-new-feature-branch

Push changes to a fork
Click to enlarge:

When to do this: Periodically as you work, e "
commit your change. You o —— e —
should create one commit for Bt R e
each unit of work on a feature. e =
For example, adding a new P k

page or drafting a procedure.

Prerequisites: ® aclone on your local
machine
® afeature branch in that
clone

This example shows you how to add a directory to the docs subdirectory in a branch. Each directory should have an index.md file, so this
example illustrates that as well.
1. Verify you are working in the correct branch and list unstaged changes.

....................................................................................................................................................................

$ git status
On branch carry-1830
Your branch is up-to-date with 'origin/carry-1830'.

Changes not staged for commit:
<snip>
modified: install-machine.md

3. Commit your change locally.



$ git commit -s -m "Incorporate comments"
[carry-1830 7bb79dc] Incorporate comments
1 file changed, 20 insertions(+), 8 deletions(-)

4. Push your changes
Your fork is on GitHub and is known to your local Git as the origin remote.

....................................................................................................................................................................

$ git push
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 849 bytes | 0 bytes/s, done.
Total 4 (delta 3), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
211f80a..7bb79dc carry-1830 -> carry-1830

5. Go to your fork on GitHub.
6. Look for the pushed code.

Rebase, squash, and push to your fork
Click to enlarge

When to do this: ® Daily. This ensures your
local master and fork are
even with the upstream/ma S
ster. If you have a T e
long-lived feature branch, s
you should rebase your B
feature branch frequently.

® Before you make a pull
request to ensure your
changes consist of single
commit, not several.

® |f you have an existing pull L
request you need to
update.

o bagsuE Yar
i i

Prerequisites: ® One or more changes on a
feature branch.

This procedure gets the latest changes from the docker/repository master branch and merges them to your feature branch. Then, you
push the changes to the master branch on your fork. Then, you rebase your feature branch to ensure it has all the changes from master b
efore you make a pull request. Why a single commit? It makes backing out a change easier.

1. Daily update and rebase the master branch on your local repository.
2. Checkout your feature branch.

....................................................................................................................................................................

3. Make sure you have pushed all your changes to your fork.
You want to make sure your changes are in the fork in case you mess up your rebase somehow. Having the changes in the fork
already make it easier to recover.

Do Description

git status Tells you if you have unstaged work or commits you haven't pushed.



git checkout — path_to file To unstage work you don't want in the branch. This removes all your work in a

file.
git commit -s -m "message" To commit work you want in your fork.
filename
git push origin Push your changes to your fork.

4. Interactively rebase your feature branch.
This command says to interactively take the changes from the upstream/master and merge them into your branch. Interactive
rebase allows you to fix (resolve) any conflicts with the changes in your feature branch.

$ git rebase -i upstream/master

When you issue this command, Git sends you into a rebase workflow. Make sure read the information Git gives you. Remember, Git
is a version control system, so you can recover from most any problem you may cause.

a. Git opens an editor listing all the commits in this branch.
b. Make sure only the first commit says pick; change the other pick instances to squash.

pick 2920840 adding thig
squash efa047f Adding in the metadata
# Rebase 36abac3..efal047f onto 36abac3 (2 command(s))

#

# Commands :

# p, pick = use commit

# r, reword = use commit, but edit the commit message

# e, edit = use commit, but stop for amending

# s, squash = use commit, but meld into previous commit

# £, fixup = like "squash", but discard this commit's log
message

# x, exec = run command (the rest of the line) using shell
# d, drop = remove commit

#

# These lines can be re-ordered; they are executed from top to
bottom.

#

# If you remove a line here THAT COMMIT WILL BE LOST.

#

# However, if you remove everything, the rebase will be
aborted.

#

# Note that empty commits are commented out

c. Save and close the file.
d. Git opens another editor listing all the commit messages.



# This is a combination of 2 commits.

# The first commit's message is:

adding thig

Signed-off-by: Mary Anthony <mary@docker.com>

# This is the 2nd commit message:

Adding in the metadata

Signed-off-by: Mary Anthony <mary@docker.com>

# Please enter the commit message for your changes. Lines

starting

# with '#' will be ignored, and an empty message aborts the
commit.

#

# Date: Sun Jan 10 19:22:03 2016 -0800

#

# interactive rebase in progress; onto 36abac3

# Last commands done (2 commands done):

# pick 2920840 adding thig

# squash efa047f Adding in the metadata

# No commands remaining.

# You are currently editing a commit while rebasing branch

my-new-feature-branch' on '36abac3'.

Changes to be committed:
new file: docs/cooldir/index.md

H H W H

e. Leave all the messages but only one signature.



# This is a combination of 2 commits.

adding thig

Adding in the metadata

Signed-off-by: Mary Anthony <mary@docker.com>

# Please enter the commit message for your changes. Lines

starting

# with '#' will be ignored, and an empty message aborts the
commit.

#

# Date: Sun Jan 10 19:22:03 2016 -0800

#

# interactive rebase in progress; onto 36abac3

# Last commands done (2 commands done):

# pick 2920840 adding thig

# squash efa047f Adding in the metadata

# No commands remaining.

# You are currently editing a commit while rebasing branch

my-new-feature-branch' on '36abac3’'.

Changes to be committed:
new file: docs/cooldir/index.md

H* W K W

f. Save and close the file.
g. Git gives you the status of the rebase.

$ git rebase -i upstream/master

[detached HEAD 7£94622] adding thig

Date: Sun Jan 10 19:22:03 2016 -0800

1 file changed, 1 insertion(+)

create mode 100644 docs/cooldir/index.md
Successfully rebased and updated
refs/heads/my-new-feature-branch.

.........................................................................................................................................................

....................................................................................................................................................................

$ git push -f origin
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 439 bytes | 0 bytes/s, done.
Total 5 (delta 2), reused 0 (delta 0)
To git@github.com:moxiegirl/machine.git
+ efal047f...7£94622 my-new-feature-branch -> my-new-feature-branch
(forced update)

6. Go up to your fork on GitHub and make sure the pushed code is there.



O This repository Pull requests Issues Gist ¥ ToDo g’ ++ W~

moxiegirl / machine =~ @uUnwatch~ 1 Star 0  YFork 676

forked from docker/machine
<> Code Pull requests 0 Wiki Boards Burndown Pulse Graphs Settings
Machine management for a container-centric world https://docs.docker.com/machine/ — Edit

D 2,395 commits V' 22 branches > 13 releases (b 174 contributors

Your recently pushed branches:
¥ my-new-feature-branch (1 minute ago)

Branch: master v New file  Find file SSH~ git@github.com:moxiegirl/me @. &'l Download ZIP

Pull request Compare

This branch is even with docker:master. (N
i dgageot Merge pull request #2786 from jeanlaurent/back-10-0.5.6 === Latest commit 36abac3 2 days ago

7 days ago

8 Godeps FIX #2703 Update dockerclient

Fixing merge conflicts while rebasing
On this page:

®* MARINES. We are LEAVING! (Or how to get out of the

middle of a rebase)
® We got nukes, we got knives, we got sharp sticks (or other

ways to do this)

The strange part is, docs-alpha7-a seemed to
be okay.

-- Vickley

Sometimes, when you rebase everything seems like it is ok. But then, you hit something you haven't seen
in a while. A merge conflict. And it isn't that much fun anymore. (Except for the Alien quotes...see if you can

spot them all)

1. Daily update and rebase the master branch on your local repository.
2. Switch to the local feature branch that contains the changes you want to merge.

....................................................................................................................................................................
i

3. Start an interactive rebase.
4. Git prompts you to edit the "todo" list.



vim rebase-merge git-rebase-todo.b git-rebase-todo head-name interactive onto orig-head quiet

B git-rebase-todo 1 pick 136leae Pass network driver option in docker network command
B git-rebase-todo.backup 2 pick 10b5949 Update ambassador image, use the socat -t option
=) head-name 3 pick 69cfb52 Docs: update docs for API stats
= llnteractive 4 pick b63c2ab rename ‘POST /volumes' to ‘POST /volumes/create' to be consistent
=G * with the other ‘POST /.../create' endpoints
% ::i;md 5 pick f4dc974 Make default tls host work
6 pick 620817e Add support for multiple network in inspect
7 pick fd2633a Move volume name validation to the local driver.
8 pick 587a@0ff graph: add parent img refcount for faster rmi
9 pick 7ff56c5 Use RepoTags & RepoDigest in inspect

10 pick 05e3f2f Fail when there is an error executing an inspect template.
git-rebase-todo  1:1 LF UTF-8 Git Rebase Message §9 12-21-15-release ¥ 1 [ 1 update

5. Change all "pick" to "squash" except for the first pick which should stay pick.

vim rebase-merge git-rebase-todo.b git-rebase-todo head-name interactive onto orig-head quiet

=] git-rebase-todo 1 pick 1361leae Pa work driver option in docker network command

B git-rebase-todo.backup 2 squash 10b5949 Update ambassador image, use the socat -t option

B head-name 3 squash 69cfb52 Docs: update docs for API stats

=R A ~ N N ~ :

s 4 squash b63c2ab rename ‘POST /volumes' to "POST /volumes/create' to be consistent

B : . N :

— e * with the other "POST /.../create’ endpoints

B orig-head

. 5 squash f4dc974 Make default tls host work

= qu\et AP b £O9001 T4 Add ciiomeo - e K i bl a madiiamle e lacmand
1 result found for 'pick’ Finding with Options: Case Insensitive
pick 1 found Find X Aa = W
squash Replace Replace All
git-rebase-todo  1:5 LF UTF-8 Git Rebase Message P 12-21-15-release ¥ 1 9 1 update

6. Save and close the release-merge.
Git starts the rebase and then it says:

$ git rebase -i upstream/master
error: could not apply 1l36leae... Pass network driver option in
docker network command

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase
—-—abort".

Could not apply 1361leaef7¢796911b58002c248bcdl158adl272fd... Pass
network driver option in docker network command

At this point, you suddenly think I'm on an express elevator to hell, going down! Because you know you have a merge conflict and
your rebase is stopped until you resolve it.
7. Use the git status command to see where the conflict is.



$ git status
interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):
pick 136leae Pass network driver option in docker network
command
Next commands to do (49 remaining commands):
squash 10b5949 Update ambassador image, use the socat -t option
squash 69cfb52 Docs: update docs for API stats
(use "git rebase --edit-todo" to view and edit)
You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
(fix conflicts and then run "git rebase --continue")
(use "git rebase --skip" to skip this patch)
(use "git rebase --abort" to check out the original branch)

Unmerged paths:
(use "git reset HEAD <file>..." to unstage)
(use "git add <file>..." to mark resolution)

both modified: api/client/network.go

both modified: api/server/router/network/network routes.go
both modified: daemon/network.go

both modified: integration-cli/docker cli network unix test.go

both modified:
vendor/src/github.com/docker/engine-api/types/types.go

no changes added to commit (use "git add" and/or "git commit -a")

It’s very pretty, you think, but what are we looking for? You are looking for the Unmerged paths. You modified those files but so
did someone else on the master branch you are rebasing against.

8. Open the first modified file for editing.

9. Search the file for <<<<<<< HEAD or just HEAD.
When you find the conflict it looks like this:

. network.go .
71
72
73 nc := types.NetworkCreate{
74 Name: cmd.Arg(0),
75 <<<<<<< HEAD master branc
76 Driver: driver, —
77 IPAM: network.IPAM{Driver: xflIpamDriver, Config: ipamCfg,
. Options: flIpamOpt.GetAll()},
78 ======
79 Driver: *flDriver,
80 IPAM: network.IPAM{Driver: *flIpamDriver, Config: ipamCfg}, ‘g
81 >>>>>>> 136leae... Pass network driver option in docker network command Your branch
82 Options: fl0pts.GetAll(), )
83 CheckDuplicate: true,
84 Internal: *flInternal,
85 }
86
87 resp, err := cli.client.NetworkCreate(nc)
88 if err != nil {
89 return err
90 }
1 result found for 'HEAD' Case Insensitive
HEAD Find K Aa oEm aw
f 1 n current t er Replace Replace All

/Users/mary/repos/docker/api/client/network.go* 75:1 (1, 12) LF UTF-8 Go [T 1 update



10. Remove the markers and the content you don't want.
Your browser does not support the HTML5 video element

11. Repeat for each remaining HEAD conflict.

12. Save and close the file.

13. Do a git status again to see what happened.

$ git status
interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):
pick 136leae Pass network driver option in docker network
command
Next commands to do (49 remaining commands):
squash 10b5949 Update ambassador image, use the socat -t option
squash 69cfb52 Docs: update docs for API stats
(use "git rebase --edit-todo" to view and edit)
You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
(fix conflicts and then run "git rebase --continue")
(use "git rebase --skip" to skip this patch)
(use "git rebase --abort" to check out the original branch)

Unmerged paths:
(use "git reset HEAD <file>..." to unstage)

(use "git add <file>..." to mark resolution)

both modified: api/client/network.go

both modified: api/server/router/network/network routes.go
both modified: daemon/network.go
both modified: integration-cli/docker cli network unix test.go

both modified:
vendor/src/github.com/docker/engine-api/types/types.go

no changes added to commit (use "git add" and/or "git commit -a")

The file you changed still shows as modified.
14. Use the git add command to mark the file's conflicts resolved.

....................................................................................................................................................................

Vickley, what are you doing? Do not use the git commit message during a rebase! Git does the commits for you
automatically.

15. Repeat step 7 through 14 until all the conflicts are resolved.
16. After you have added all the files, do a git status again.



$ git status

interactive rebase in progress; onto 9ae51b3
Last command done (1 command done):

pick 136leae Pass network driver option

command

Next commands to do (49 remaining commands):
squash 10b5949 Update ambassador image, use the socat -t option
squash 69cfb52 Docs: update docs for API stats
(use "git rebase --edit-todo" to view and edit)

You are currently rebasing branch 'docs-alpha7-a' on '9ae51b3'.
(all conflicts fixed: run "git rebase --continue")

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified:
modified:
modified:
modified:
modified:

api/client/network.go

in docker network

api/server/router/network/network routes.go

daemon/network.go

integration-cli/docker cli network unix test.go
vendor/src/github.com/docker/engine-api/types/types.go

As you can see, we're in the pipe five-by-five. Everything is ready to continue.
17. Tell Git to continue the rebase.

18. Git asks you to edit the final commit message.

vim .git

>
>
>
>
>
>

jum]

FEFREE

©CONOOULHEWNR

P el
B WNRS

15
16

# This is a combination of 2 commits.
# The first commit's message is:

Pass network driver option in docker network command

Signed-off-by: Madhu Venugopal <madhu@docker.com>

# This is the 2nd commit message:

Update ambassador image, use the socat -t option

COMMIT_EDITMSG — .git

Signed-off-by: Aidan Hobson Sayers <aidanhs@cantab.net>

COMMIT_EDITMSG  1:1

19. Save and close the file to continue.
You may have to resolve multiple conflicts. Why is that? A rebase is Git "Playing" the commits from master over your branch.
20. Continue until Git tells you it succeeded.

LF

UTF-8  Git Commit Message

P 208e85a

@

1 1 update



$ git rebase --continue

[detached HEAD b2f92e6] Fixed path to docker.log from Finder, added
what's new item re: com.docker.driver.amd64-linux binary, format
copyedits

1 file changed, 1 insertion(+), 1 deletion(-)
Successfully rebased and updated refs/heads/docs-alpha7-a.

Aye-firmative. Ready to push to your fork.
21. Push the rebased code to your fork.

....................................................................................................................................................................

$ git push -f origin

Counting objects: 7, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (7/7), 632 bytes | 0 bytes/s, done.
Total 7 (delta 5), reused 0 (delta 0)

To git@github.com:londoncalling/pinata.git

+ b73399%a...b2f92e6 docs-alpha7-a -> docs-alpha7-a (forced update)

Now would be a time to have a strong mocha with whipped cream, and consider this: don't try to commit when you are in the middle of a
rebase.

MARINES. We are LEAVING! (Or how to get out of the middle of a rebase)

What do you do if you run into a problem or simply get confused in the middle of a rebase? Up to the point the Git rebase announces it is
successful, you can get the heck out of an interactive rebase at any time by doing this:

This stops the rebase and returns you to exactly the point you were at when you started the rebase. It is as if it never happened. Now, you
can start again or ask for help.

We got nukes, we got knives, we got sharp sticks (or other ways to do this)

There are lots of ways to do a rebase and lots more to Git merge than this one page teaches you. So, do some reading and this article on Git
Conflict Resolution is really good.

Create a pull request
Click to enlarge:

When to do this: ® You are ready to have
your work reviewed by
others.

® You want to create a WIP
pull request so people can
see your changes as you
work.

Prerequisites: ® Feature work done or in
progress on a branch.


http://tedfelix.com/software/git-conflict-resolution.html#git-rebase
http://tedfelix.com/software/git-conflict-resolution.html#git-rebase

e hagsuse
EYtTi e,

Introductory sentence

1. Rebase, squash, and push to your fork.
2. Go to your fork on GitHub.
3. Make sure your feature branch is pushed.

O This repository  Search Pull requests Issues Gist ¥ ToDo L 4 L 4
’ moxiegirl / machine | =~ @uUnwatch~ 1 % Star 0  YFork 676
forked from docker/machine

<> Code Pull requests 0 Wiki || Boards Burndown Pulse Graphs

Machine management for a container-centric world https://docs.docker.com/machine/ — Edit

D 2,395 commits ¥ 22 branches © 13 releases

Settings

(i 174 contributors

Your recently pushed branches:

o I my-new-feature-branch (1 minute ago)

Branch: master v New file  Find file SSH~ git@github.com:moxiegirl/m¢ @ Gj Download ZIP

This branch is even with docker:master. X
. dgageot Merge pull request #2786 from jeanlaurent/back-to-0.5.6

8 Godeps FIX #2703 Update dockerclient

4. Press Compare & pull request.

O This repository Search Pull requests Issues Gist ¥ ToDo

iii
4

o moxiegirl / machine
forked from docker/machine

<> Code Pull requests 0 Wiki || Boards Burndown Pulse Graphs

Machine management for a container-centric world https://docs.docker.com/machine/ — Edit

{D 2,395 commits ¥ 22 branches © 13 releases

Pull request Compare
Latest commit 36abac3 2 days ago

7 days ago

TR

©® Unwatch~ 1 * Star 0 ¥ Fork 676

Settings

(i 174 contributors

Your recently pushed branches:

o I my-new-feature-branch (1 minute ago)

© ===

Branch: master v New file  Find file SSH~ git@github.com:moxiegirl/me E. GJ Download ZIP

This branch is even with docker:master. X
. dgageot Merge pull request #2786 from jeanlaurent/back-to-0.5.6

8 Godeps FIX #2703 Update dockerclient

Pull request Compare
Latest commit 36abac3 2 days ago

7 days ago

5. Make sure the pull request is to the docker/repository master and from your/repository feature branch.



Open a pull requgst
Create a new pull request by aring changdlé across two branches. If you need to, yf n also compare ss forks.

(N} base fork: docker/machine v base: master v ... head fork: moxiegirl/machine v compare: my-new-feature-branch v v Able to merge. These branches can be automatically merged.

Please review the guidelines for contributing to this repository.

x Testing a procedure for the writers guide.

Write Preview CD Styling with Markdown is supported

6. Write a reasonable message about your work to let reviewers know why this change.
L3

k Testing a procedure for the writers guide.

Write Preview €I Styling with Markdown is supported

Adding in the metadata

Signed-off-by: Mary Anthony <mary@docker.com>

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

7. Check the content of the pull request.
The number of files, the names of the files, and the changes should all be checked.

o -0 1 commit o 1 file changed 70 commit comments b 1 contributor

Lﬂ Commits on Jan 10, 2016

W moxiegirl adding thig -
Showing 1 changed file with 1 addition and 0 deletions. Unified = Split
) docslcooldir/index.md o A-om
im docs/cooldir/index.md o B View [J

+Changing this file.

8. Press Create pull request.
GitHub creates the pull request on the original repository. Take some time to navigate among the tabs on the pull request.



O This repository Pull requests Issues Gist + ToDo A' +- W~

docker / machine =~ @Unwatch~ 225 4 Star 2880 Y Fork 676
Code Issues 393 i Pull requests 23 Boards Burndown Wiki Pulse Graphs
Testing a procedure for the writers guide. Edit

') Open ‘ moxiegirl wanfs to merge 1 commit into docker:master from moxiegirl:my-new-feature-branch

¥ Conversation 0 o Commits 1 [ Files changed 1 / H1-0m
/x moxiegirl commented just no\ Collaborator Labels

None yet
Adding in the metadata
Milestone

Signed-off-by: Mary Anthony mary@docker.com
No milestone

W adding thig - Estimate

No estimate yet

Add more commits by pushing to the my-new-feature-branch branch on moxiegirVmachine.
Assignee

Hidg oll chack AL "

Participate a pull request review

Completed work goes through a peer review. The mechanism for reviewing work in GitHub is a pull request. This page contains information
specific to reviewing pull request for Docker repositories.

Make sure you read through or review the GitHub help for pull requests.

Terminology

Term Definition

open OSS is computer software with its source code made available with a license in which the copyright holder provides the rights to
source study, change, and distribute the software to anyone and for any purpose. Open-source software may be developed in a collabor
software ative public manner.

(0OSS)

maintainer A person responsible for code in a Docker OSS GitHub repository. This person is approved by Docker and has permissions to

merge PRs on our projects.

developer A person responsible for code in a Docker commercial GitHub repository.

reviewer OSS repositories are public, this means anyone can review a

LGTM LGTM is an acronym that stands for Looks Good To Me and, like it sounds, it means the person who wrote it approves of your

work. People will sometimes give you a —=LGTM which means | don't approve this.

Workflow for getting a pull request reviewed

1. From GitHub, create a pull request from your fork to a branch on the Docker-owned repository.
Typically, the pull request will be from your fork's feature branch to the master branch on the Docker repository.

2. Make sure your pull requests references any related issues it is fixing or closing.
There are a couple of ways to do this. You can add an issue number in a Git comment or you can add a link reference in the PR
description.

[o )0 ¢) I SN L]

. Mention or ping the reviewers you want.

. Change the label on the PR to "ready for a review."

. Respond to the reviewers in a timely manner.

. If you are asked to change something, you make the change in the same feature branch where the PR originated.

There is a one-to-one relationship between feature branch and pull requests. You cannot have to PR which both originate with the same
feature branch.

~

. Commit and push your change as you normally would.

8. Then, rebase and squash to ensure your PR has a single commit.


https://help.github.com/articles/using-pull-requests/
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Copyright
https://help.github.com/articles/closing-issues-via-commit-messages/
https://help.github.com/articles/writing-on-github/#references
https://help.github.com/articles/writing-on-github/#references
https://help.github.com/articles/writing-on-github/#features

9. Add a comment to the PR to notify the reviewers you have updated the work.
This comment causes GitHub to notify your reviewers you've updated your work. If you forget this, the reviewers will not come back.
10. Ask for a review if you don't have enough LGTMs.
11. Merge when you have met all the requirements.

When is an LGTM not an LGTM?

People can qualify an LGTM for example:

.....................................................................................................................................................................................

If you get a qualified LGTM, then make the change and ask for another check from the commenter. Only then can you accept their LGTM as
legit.

So, that means you must work with the review to address his or her concerns.

Requirements (rules) for merging

When you merge a pull request, you move code from your fork's feature branch into Docker's code base. There are the import rules for
merging. You should always follow these rules. There are some projects and repositories where there are exceptions to these rules. This

page explains both the rules and the acceptable exceptions.

Open source (public) merge rules

These apply to all Docker OSS projects:

® You must have at least two reviewers who are project
maintainers give you an LGTM.
® |f you are making a significant change, you must get a
review from another doc-maintainer.
® |f you are moving or removing pages
® |f you are adding or removing more than 1
paragraph
® Do not merge your own PR: someone else must merge it for
you.
® Do not merge if there is a broken Continuous Integration
(Cl) test on your PR.
® Re-run the test to see if it clears
® |f the test continues to fail, get a
comment a comment on the PR from a
maintainer on the project which says:

Good to merge with broken test;
not a doc impact

Exceptions in open source

Project Exception

docker/docker The project allows you to
merge your own pull request
provided all the other

conditions are met.

® Mary reviews each of
Sven's PRs

® Sven or Seb reviews each
of Mary's PRs

® Mary and Sven reviews
any other contribution

docker/docs-base

Commercial source (private) merge rules

These apply to all Docke commercial projects:

® You must have at least one reviewer who is a developer
give you an LGTM.
® |f you are making a significant change, get an LGTM from a
documentation team member.
® Do not merge if there is a broken Continuous Integration
(Cl) test on your PR.
® Re-run the test to see if it clears
® |f the test continues to fail, get a comment on the
PR from a developer on the project which says:

Good to merge with broken test; not
a doc impact

Exceptions in commercial source

®* None at this time.



docker/docs.docker.com ® Mary reviews each of

Sven's PRs

® Sven or Seb reviews each
of Mary's PRs

® Mary and Sven reviews
any other contribution

Test or carry another user's code branch

Sometimes, you need to build the code on another user's pull request. For example, if you want to check the document layout or see how the
page flows. A pull request's code is accessible through the upstream remote. You can check it out like any other branch, provided you have
configured your repository .git/config properly.

Configure the .git/config for the repository

1. Change to the root of your repository.
2. Editthe .git/config file in your favorite editor.
3. Add a fetch for pull requests:

.........................................................................................................................................................................

[remote "upstream"]

url = git@github.com:docker/orca.git

fetch +refs/heads/*:refs/remotes/upstream/*

fetch +refs/pull/*/head:refs/remotes/upstream/pull/*
pushurl = no_push

Line 4 is what allows you to pull another user's code branch.

4. Save and close the file.
5. Doagit fetch to download the refs for all the pull requests to your local system.

$ git fetch upstream

Saving password to keychain failed

Identity added: /Users/victoriabialas/.ssh/id rsa
(/Users/victoriabialas/.ssh/id rsa)

remote: Counting objects: 4518, done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 4518 (delta 2570), reused 2568 (delta 2568), pack-reused
1929

Receiving objects: 100% (4518/4518), 5.93 MiB | 3.32 MiB/s, done.
Resolving deltas: 100% (3114/3114), completed with 984 local objects.
From github.com:docker/compose

* [new ref] refs/pull/10/head -> upstream/pull/10

* [new ref] refs/pull/100/head -> upstream/pull/100

* [new ref] refs/pull/1001/head -> upstream/pull/1001
* [new ref] refs/pull/1002/head -> upstream/pull/1002
* [new ref] refs/pull/1005/head -> upstream/pull/1005
* [new ref] refs/pull/1006/head -> upstream/pull/1006
* [new ref] refs/pull/1007/head -> upstream/pull/1007

How to checkout another user's code branch

1.

In GitHub, locate the number of the pull request you want to checkout.



*Document how to install UCP in production «~

joaofnfernandes wants to merge 1 commit into docker:master from joaofnfernandes:ucp-install-production

(&J Conversation 11 - Commits 1 [A) Files changed 2

2. Make sure you are in your repo.
3. Use the checkout command like this:

.........................................................................................................................................................................

$ git checkout upstream/pull/704
Note: checking out 'upstream/pull/704'.

You are in 'detached HEAD' state. You can look around, make
experimental

changes and commit them, and you can discard any commits you make in
this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you
may

do so (now or later) by using -b with the checkout command again.
Example:

git checkout -b <new-branch-name>

HEAD is now at 4cb5a79... Document how to install UCP in production

4. Read the message Git gives you.
In this branch, you can make changes but you can't push back your changes. If you want to do that, branch off the branch as Git
instructs.

5. Once you review how the code in the PR behaves, you can make comments about it on GitHub.

Carrying a PR on a new branch

You can carry a PR for another contributor or person. A carry allows you to make any needed code changes yourself. You carry a PR in these
situations:

® the contributor has started but can't complete a change
® a contributor abandoned a change
® a contributor or another Docker maintainer asks you to in the course of your work

If you decide to carry, do the following:

1. Add a comment on the existing PR telling the requestor that you will carry.
2. Branch from the detached HEAD that you created with the upstream pull on the PR.

This creates a new, standard, local branch that points to HEAD. From here, you can work with the files and branch as you normally
would.
3. When you are ready to push, follow the same procedure as you typically do, described in Rebase, squash, and push to your fork, with
these few exceptions:
a. In the commit message, indicate that the commit "carries and closes #<PR>".



The #mention is a GitHub feature. It causes GitHub to automatically close the original pull request when your new request is

merged.

b. Provide the option to open a new PR with your latest changes, and carry along the original commits and conversation thr
c. When you do the interactive rebase ($ git rebase -i upstream/master), the commit messages will include those from

the initiator of the original PR, along with their signature.

Be sure to keep those in the message along with your messages and signature when you save and close the file.

d. After pushing the changes ($ git push -f origin), go to your fork and make sure that the changes show up there, then
continue with Create a pull request. On the branch you were working in, you'll get the option to open a new PR with your latest
changes, and carry along the original commits and conversation thread.

Understand when and how to merge a pull request

When you merge a pull request, you move code from your fork's feature branch into Docker's code base. There are the import rules for
merging. You should always follow these rules. There are some projects and repositories where there are exceptions to these rules. This

page explains both the rules and the acceptable exceptions.

Open source (public) merge rules

These apply to all Docker OSS projects:

® You must have at least two reviewers who are project
maintainers give you an LGTM.
® |f you are making a significant change, you must get a
review from another doc-maintainer.
® |f you are moving or removing pages
® |f you are adding or removing more than 1
paragraph
® Do not merge your own PR: someone else must merge it for
you.
® Do not merge if there is a broken Continuous Integration
(Cl) test on your PR.
® Re-run the test to see if it clears
® [f the test continues to fail, get a
comment a comment on the PR from a
maintainer on the project which says:

Good to merge with broken test;
not a doc impact

Exceptions in open source

Project Exception

docker/docker The project allows you to

merge your own pull request

provided all the other

conditions are met.

docker/docs-base ® Mary reviews each of
Sven's PRs

® Sven or Seb reviews each
of Mary's PRs

® Mary and Sven reviews
any other contribution

Commercial source (private) merge rules

These apply to all Docke commercial projects:

® You must have at least one reviewer who is a developer
give you an LGTM.
® If you are making a significant change, get an LGTM from a
documentation team member.
® Do not merge if there is a broken Continuous Integration
(Cl) test on your PR.
® Re-run the test to see if it clears
® [f the test continues to fail, get a comment on the
PR from a developer on the project which says:

Good to merge with broken test; not
a doc impact

Exceptions in commercial source

® None at this time.



docker/docs.docker.com ® Mary reviews each of
Sven's PRs
® Sven or Seb reviews each
of Mary's PRs
® Mary and Sven reviews
any other contribution

Backing out changes you already pushed to GitHub

Click to enlarge:

When to do this: There may be times when you
have files pushed to GitHub
and you need to back some of
the files out and keep others.
This procedure removes the
unwanted files.

kg
BeekMas v d e

Prerequisites: A file already committed to your
branch.

1. Check out your branch and check your status.
You don't want to have changes pending or staged.
2. List the commits on your branch that aren't on upstream/master.

$ git log upstream/master..my-new-feature-branch

3. Reset the branch to the last committed change.

$ git reset --soft HEAD"

The single * caret removes the last commit. If you had three commits in this branch, you could have typed: git reset --soft
HEAD “"" If you had five commits you could have used five carrots or: git reset --soft HEAD ~5

4. Do another git status.
You should see all the changes in your branch.

carolfager-higgins at merlot in ~/repos/dhe-deploy/docs on
$ git reset --soft HEAD®

carolfager-higgins at merlot in ~/repos/dhe-deploy/docs on [+]

$ git status

On branch post-dtri42

Your branch is behind 'origin/post-dtrl42' by 1 commit, and can be fast-forwarded.
(use "git pull" to update your local branch)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: assets/gcl.png

modified: assets/gc3.png

modified: install/install-csengine.md
modified: install/upgrade.md
modified: soft-garbage.md

All your files are now uncommitted. You can unstage them.
5. Once you are satisfied, git add the files you want to commit.
6. Push your changes to your fork on GitHub.



7. Go to GitHub and verify your changes.

How to cherry-pick a commit for release

Periodically, the docs build engineer updates docs.docker.com between official releases of Docker. They do this by:

® cherry-picking commits from a master branch
® merging them into the docs branch
® publishing the result from the docs branch

Create a cherry-pick based off of the upstream/docs branch

1. Go to your “docker/docker’ fork and get the latest from master.

.........................................................................................................................................................................

2. Checkout a new branch based on “upstream/docs’.
You should give your new branch a descriptive name.
5 $ git checkout -b post-1.2.0-docs-update-1 upstream/docs 5

Find the commits you want to cherry pick

Cherry-pick commits that have only .md files in them. These are documentation changes. If you cherry-pick commits with code files in them,
chances are you are cherry picking functional product changes intended for a future release.

1. In a browser window, open [https://github.com/docker/docker/commits/master].

2. Locate the merges you want to publish.
You should only cherry-pick individual commits; do not cherry-pick merge commits. To minimize merge conflicts, start with the oldest
commit and work your way forward in time.

3. Copy the commit SHA from GitHub.

4. Cherry-pick the commit.

! $ git cherry-pick -x fe845c4 5
5. Repeat until you have cherry-picked everything you want to merge.
6. Push your changes to your fork.

! $ git push origin post-1.2.0-docs-update-1 5

Git Going Cheesheet

This page has some quick reference commands for using Git with the Writer workflow. They are categorized by specific activities. Where there is
a detailed procedure. That is noted.

Set Global Git Configuration

Getting a repo to your local machine

Commonly used commands

Undoing Git things

How to get to another users' fork when you don't have the URL
Other helpful commands

Non-Git commands you need to run in the course of your work

Set Global Git Configuration


https://github.com/docker/docker/commits/master

Typically, you only do this one per machine.

Command

Notes

git config --global user.name "FirstN You need to do this before creating a pull request.

ame LastName"

git config --global user.email "email

name@mycompany.com"

git config --global core.editor "atom This assumes Atom is your editor. You might want to use another editor so change the

--wait"

command accordingly.

Getting a repo to your local machine

See Create a repository clone on your local machine for the full procedure.

Command or Action

Fork the original repo on GitHub

Notes

Copies the repo to your account.

git clone url-to-your-forked-repo Clones the repo to your local machine. Usually you should use the SSH protocol.

git remote add upstream url-to-the-orig Do this from the within your fork directory. This sets as upstream the Docker repository

inal-repo

you forked.

git remote set-url --push REMOTE_NAME This command prevents the accidental push to a repository.

no_push

Commonly used commands

Most of these commands you use every day.

Command

git status

git checkout BRANCH_ NA
ME

git fetch REMOTE_NAME

git rebase REMOTE_NAME
/BRANCH_NAME

git add filename

git commit -s -m “Mess
age for commit”

git push REMOTE NAME

Undoing Git things

Notes

Used on the file system within a repo. Informs you about the current status.

Checks out an existing branch --- basically switches you to the branch

Fetches the latest references (committed changes) from a remote. If you use the , called upstream remote ---
if you are following along with this page, that is the original repo

Does a fast-forward merge. Dangerous if you don't know what you are doing. See Daily update and rebase
the master branch on your local repository and Rebase, squash, and push to your fork.

Stages a file for commit. See Add a new file or folder to Git tracking

Commits a change. See Add a new file or folder to Git tracking

Pushes changes to a remote repository. See Add a new file or folder to Git tracking


http://user.name
http://mycompany.com

Command

git checkout
BRANCH_NAME —
FILE_PATH

git checkout --
FILE_NAME

git reset --hard
HEAD~2

git reset HEAD"

git branch -b
BRANCH_NAME

How to get to another users' fork when you don't have the URL

docker / cloud-docs

Code Issues 2

Options

Collaborators & teams
Branches

Webhooks & services

Deploy keys

Other helpful commands

Command

git config --global core.excludesfile

Notes

Checkout a file from specific branch. For example, if you want to back out a file change you made in a feature
branch, you can checkout the file from the upstream/master branch.

git checkout upstream/master -- docs/multi-manager-setup.md

Discards a file that you modified but did not commit yet, and reverts it to its state before you made the changes.

Examples:

Removes the last two commits. Increase the number to remove even more commits.

"Uncommits" the commits (removes them from the branch and the index), but retains the changes in the

working tree for re-working.

Run this in an existing feature branch when you want to save current changes to a different branch.

Pull requests 5 Boards Burndown

Teams

bots.write
docs PR jenkins jobs (both oss and closed)

2 members

docs.owners
Owners for doc related repositories

6 members

docs.maintainers
6 members

Wiki Pulse

Write ~

Admin ~

Write ~

'file-type-or-path’

® Watch~ 5 % Star 0 Y Fork 4

Graphs £} Settings

+ Create ng

Notes

Prevents Git from including files or folders
in a commit.

git log --graph --pretty=format:'%Cred%h%Creset -3%3C(yellow)%d%Creset %s Example of a fancy comparison.

$Cgreen(%cr)%Creset’

--abbrev-commit --date=relative --since=2015-08-11 branchname..master

docs

Non-Git commands you need to run in the course of your work

Command

Notes



ssh-add ~/.ssh/filename Adds an identity to the ssh-agent on your Mac. See Correct a Permission Denied
(publickey) error

docker rm $(docker ps -a -q) Removes all the containers.

docker rmi -f $(docker images -q -a -f  This will remove untagged images, that are the leaves of the images tree (not

dangling=true) intermediary layers). If you have a container that is using the image it is not removed.
docker rmi -f $(docker images -q -a ) Forcefully removes all images.
docker-machine create -d virtualbox Creates machine called default with the size of 20G. Useful if you run out of space

--virtualbox-disk-size "20000" default on your machine.

FAQ about writers and Git

® Why not just use the Edit command on a file in GitHub?
® Why don't the writers just use X simple GUI for Git or do Y instead of X with Git?

Why not just use the Edit command on a file in GitHub?

The edit command doesn't allow a user to enter a signature that our Cl system can recognize. It also doesn't allow the contributor to easily update
the change.

Why don't the writers just use X simple GUI for Git or do Y instead of X with Git?

Writers use the Git command line and use the same, identical workflows because:

® Writers use the same process and tools we teach our OSS contributors: this allows writers to help contributors on the OSS project
GUI tools or other tools are just one more thing to learn.
If each writer chooses a tool they like, then whoever is helping them is stuck learning N number of tools. Not practical.
If writers use the Git command line and no other writer is around to help them, then an engineer is likely to know Git and can help.
Using the command line forces writers into simple developer workflow. It is the workflow our contributors use. Adding to a writers
knowledge in this way makes them more effective in working with their audience.
® Gitis very flexible, there are a millions of ways to do each thing. There are millions of situations they can get into. If writers stick to the

same proven workflow, particularly when learning Git/GitHub, they are less likely to get into trouble.

Troubleshooting Git

® Correct a Permission Denied (publickey) error
® Correct a TLS-enabled daemon error

Correct a Permission Denied (publickey) error

If you get a public key error interacting with a remote repository. Make sure you add your public key to your SSH agent.

$ git fetch upstream

Permission denied (publickey).

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

$ ssh-add ~/.ssh/mma-docker

Enter passphrase for /Users/mary/.ssh/mma-docker:

Identity added: /Users/mary/.ssh/mma-docker (/Users/mary/.ssh/mma-docker)

Correct a TLS-enabled daemon error



TLS-enabled daemon error

$ make docs

docker build -t "docs-base:fixes-15790" .

Post
http:///var/run/docker.sock/v1.20/build?cgroupparent=&cpuperiod=0&cpuquota
=0&cpusetcpus=&cpusetmems=&cpu<snip>: no such file or directory.

* Are you trying to connect to a TLS-enabled daemon without TLS?

* Is your docker daemon up and running?

make: *** [docs-build] Error 1

.........................................................................................................................................................................

$ docker-machine 1ls
NAME ACTIVE DRIVER
default * virtualbox

2. Ifitis running, get the environment config for your machine.

.........................................................................................................................................................................

.........................................................................................................................................................................

4. Try the make docs command again.

Checkout a remote branch from GitHub

When to do this: You might want to do this if you = -
accidentally remove or destroy = = =
your local repository. -

Prerequisites: A clone of your fork.

The branches on your GitHub fork are remote from your local repository. When you clone a fork, the c1one operation has the references for
all the remote branches, but only creates a master branch locally. To list all the branches Git knows about both local and remote, use the gi
t branch -lacommand. The output shows the branches that are local and the remote ones.



$ git branch -1la

* fix-904
fix-release-notes
master
remotes/origin/HEAD -> origin/master
remotes/origin/add-engine-discovery
remotes/origin/block-out-docs
remotes/origin/carry-443
remotes/origin/deploy-app
remotes/origin/docs-beta-7

Git checks out and creates a local branch that has the name as the remote and that tracks the remote branch at origin/branch-name.

You can use git branch with the -t (—track) flag to create the branch without switching to it.

Guidance and Style

® Page construction and format

® Style Guide

¢ Terminology

® Guidelines for screenshots and illustrations
® Other Books, Blogs, and Bibliostuff

Page construction and format

®* Metadata
® Block TBD and TODO in Comments
® Code and command line examples

Metadata

Each page starts with metadata in TOML format. Hugo calls this area Frontmatter.

.....................................................................................................................................................................................

<!--[metadata]>
+++
draft=true|false
title = "Title as it appears on a menu"
description = "Description of page"
keywords = ["appear as metatags in a generated HTML document"]
[menu.main]
identifier="Page identifier"
parent = "Parent page identifier"
weight = "negative or positive integer value"
+++
<![end-metadata]-->

.....................................................................................................................................................................................


http://gohugo.io/content/front-matter/

Lines

1and 12 Comments. They are there to hide the metadata when the page is displayed in GitHub. GitHub displays pages but this is display,
not a web; don't confuse it with one. Even so, developers like the page display to "work" in GitHub so we facilitate for that if we can.

2 and TOML format designators.

11

3 This is an optional component. When true, the page is not generated for the web. The default false ensures it is.

7 thru * Metadata

10 ® Block TBD and TODO in Comments

® Code and command line examples

Specifies where and in which in the menu this page appears. If you don't specify an identifier, the page uses the title as the
identifier. This can cause problems, say between the "docker help” command the "docker-machine help’. For reference material,
include an identifier to prevent name collisions such as:
identifier="eng_info"
You can have multiple menu configurations; which means you can place the page in any menu in our system. The parent value
says which menu this page hangs off of. No parent? You have a top level page.

10 A word about the weight value. This sorts a page within a menu. If you don't specify a weight, the menu sorts alphabetically.

Negative weighted pages are placed higher than positive. Try to add this value infrequently. If you have to add, use blocks of 10 you
can always add pages easily. If you start with single digits, you have to reshuffle.

Block TBD and TODO in Comments

If you want to leave a TBD, TODO, image placeholder, or other production comment in a in a page, put it in comment blocks.

.....................................................................................................................................................................................

<!--[metadata]>
Need an image here.
<![end-metadata]-->

Code and command line examples

Code can appear in three kinds places,

® as part of sentence to indicate a file or command name
® within the body of the page text
® as part of ordered or unordered list

Within the documentation generation system, we use Highlight JS to create syntax highlighting in our docs. Our system supports highlighting for
dozens of languages (and not-really-languages, like diffs and HTTP headers); to see the complete list, and how to write the language names, see
the highlight.js demo page.

Inline “code” has “back-ticks around’ it.

Within the body of the page text, fence code blocks with three back-ticks =~~~ and then follow the tics with a language indicator.


https://highlightjs.org/
http://softwaremaniacs.org/media/soft/highlight/test.html

@font-face {
font-family: Chunkfive; src: url('Chunkfive.otf');

Or this:

" javascript
var s = "JavaScript syntax highlighting";
alert(s);

To get code blocks right, you need to be careful with the indentation you're using. Check this sample to learn more.

# We start with a heading
Below you'll find a block of code.
We start with a heading @
p > .highlight {
color: #fefefe;
Below you'll find a block of code. font-size: 2em;

p > .highlight {
color: #fefefe;
font-size: 2em;

And here we have some more text.

You can also indent blocks of code like this, but if you do it,

¥ you won't be able to give hints to the syntax highlighter
3 about the language you're usling. It's up to the highlighter
And here we have some more text. to decide what to do, so here it just idents the code,

but doesn't highlight it.
You can also indent blocks of code like this, but if you do it, you won't be able to give hints to the syntax highlighter about:
the language you're using. It's up to the highlighter to decide what to do, so here it just idents the code, but doesn't p > .highlight {
highlight it. color: #fefefe;
font-size:

p > .highlight {
color: #fefefe; Markdown is picky about identations. If you want to use lists:
font-size: 2em;

} * Then you

* Can add sub bullets
* Like this

Markdown is picky about identations. If you want to use lists: % And this

* Then you
* You can also ident text
o Can add sub bullets

o Like this

o And this

But if you do it, you need to use a paragraph, and ident the text.
And you can continue writing here,

And even do paragraphs.
* You can also ident text

* In lists, you need extra care
But if you do it, you need to use a paragraph, and ident the text. And you can continue writing here,

bash
And even do paragraphs. # on how you ident code blocks
. $ echo "With the code fence syntax, you need to ident it just one level"

 In lists, you need extra care Seo

k But if don't want to use the code fence syntax

$ echo "With the code fence syntax, you need to ident it just one level" # Then you need to do two ident levels
$ echo "This seems to work"

« But if don't want to use the code fence syntax

# Then you need to do two ident levels
$ echo "This seems to work"

Style Guide

We pick an industry style guide to follow and document only those things that are contrary to the book.

Internal Style Guide


https://gist.github.com/joaofnfernandes/cdd1e51cf0dfe4d3aacc

- Srerae

Read WVWie First?y

Read Me First! A Style Guide for the Computer Industry
Third Edition (3rd Edition)

by Sun Technical Publications
Link: http://amzn.com/0137058268

Terminology

This page describes how to use special Docker terms in your writing.

Docker alone

Docker resource and or objects

Docker Engine

Docker Machine

Docker Compose

Docker Swarm

Docker Notary

Embedded in product

Component Projects (Notary and Registry)
Docker Trusted Registry

Docker Commercially Supported Engine
Universal Control Plane (UCP)

Docker alone

Docker refers to the family of OSS projects and commercial products which includes Engine, Machine, Swarm, Docker Hub, Registry etc.

Docker resource and or objects

Some things are objects or resources used within the Docker ecosystem. In these cases, where we are trying to "own" a branded flavor of these
resources of objects, the product designator should be dropped.

Docker container

Docker volume

Docker container network
Docker image

Docker Engine

Docker Engine is the core product which provides image and container functionality.
First use on a page within text, not menu titles.

® Docker Engine
® Docker Engine daemon


http://amzn.com/0137058268

Docker Engine CLI

a Docker Engine client
Docker Engine host
Docker Engine Remote API

Subsequent references in text

Engine daemon
Engine CLI

Engine CLI commands
an Engine command
an Engine client
Engine Remote API
Engine host

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
* Engine

Docker Machine

Victoria Bialas maybe you want to expand Machine terms here?
First use on a page within text, not menu navigation.

¢ Docker Machine

® Docker Machine CLI

® host (machine) - we just need to clarify what lower-case "machine" is (I've done so in latest draft of "overview")
® Dockerized host (not specific to Machine topics, though)

Subsequent references in text

® Machine
® Machine CLI

Docker Compose

First use on a page within text, not menu navigation.

® Docker Compose
® Docker Compose CLI

Subsequent references in text

® Compose
® Compose CLI

Docker Swarm

First use on a page within text, not menu navigation.

® Docker Swarm
® Docker Swarm CLI

Subsequent references in text

® Swarm
® Swarm CLI

Related terms:

Swarm cluster

cluster

high availability (HA) first use

HA subsequent use

node is a system belonging to a Swarm cluster. This system (VM or iron) is running Docker Engine
manager - a node running the Swarm manager container

primary manager - currently active manager in a cluster with multiple managers

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
® secondary manager - a node capable of replacing the primary manager should it fail

Docker Notary


https://docker.atlassian.net/wiki/display/~victoria.bialas

Notary is a component project that stands alone. It is also embedded into some of our products to provide trust to our image content.

Embedded in product

First use on a page within text, not menu navigation.
® Docker content trust
Subsequent references in text

® content trust

Component Projects (Notary and Registry)

First use on a page within text, not menu navigation.

® Docker Notary
® Docker Notary CLI
® Docker Notary API

Subsequent references in text

* Notary
® Notary CLI

Docker Trusted Registry

First use on a page within text, not menu navigation.
® Docker Trusted Registry
Subsequent references in text

® Trusted Registry

Docker Commercially Supported Engine

First use on a page within text, not menu navigation.
® Docker Commercially Supported Engine
Subsequent references in text

® CS Engine

Universal Control Plane (UCP)

First use on a page within text, not menu navigation.
® Docker Universal Control Plane
Subsequent references in text
e UCP
Related terms:
¢ See the Docker Swarm section above.

UCP cluster

cluster

high availability (HA) first use

HA subsequent use

node is a system belonging to a UCP installation and the underlying Swarm cluster. This system (VM or iron) is running Docker Engine
controller - a node running the UCP controller processes

primary controller - currently active controller in a cluster with multiple controllers

°
°
°
°
°
°
°
® replica - a node capable of replacing the primary controller should it fail



® ucp tool
® ucp tool's XXX subcommand such as engine-discovery, install, etc.
¢ the "hamburger" menu pop-out — menu

Guidelines for screenshots and illustrations

WIP COMMENT
THIS IS A DRAFT PLEASE COMMENT AWAY

) Good graphics are critical
When to do this: Refer to these guidelines when

using screenshots and
illustrations in your
documentation. The goal of this
page is to help you create
meaningful graphics that
quickly convey important
information.

Did you know that good graphics could save lives? If you are not
familiar with the Space Shuttle Challenger disaster that occurred on
January 28, 1986, you can read about it here: https://en.wikipedia.or
g/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conferen
ce_call. Suffice to say that if the contractor's charts were viewed,
NASA would have realized that the failure rate of the O-rings
increased exponentially in cold weather and they would have

Prerequisites: Snagit and Gliffy delayed that fatal launch which killed the crew.

General notes

Whether you are creating screenshots or graphics, let common sense be your guide. The goal is to display information graphically so that
users can quickly understand what they are reading about. While you may choose to use http://resizemybrowser.com/ to resize your screen,
it's not necessary if you use your laptop to take the screenshot. Currently, most of our docs are read on a laptop. If we begin to use our
phones to view doc information, then we will have to revisit this.

Since Docker is a relatively young company, it makes sense to talk about branding. These guidelines will assist the doc team in creating
screenshots and graphics that are similar in style and tone to the Docker web presence.

Introduce your screenshot or graphic before inserting it with a sentence or two. This gives readers a head's up of what they are looking at or
what is important for them to focus on.

Setting up your tools

Whether you need to take screenshots or create diagrams, you'll first need to set up your tools.

Colors

To help you in choosing colors, here are the web safe ones to use (some of these are not not final):

Black (standard) #333333 http://www.color-hex.com/color/333333

Screenshot borders gray78 #c7c7c7

blue #22b8eb This is the main color in case you were wondering and didn't use the free cool tool CSS Viewer.
Arrows: Orange #FF66900

Callouts: Orange #FF66900 or Tangerine FF9900 (Either color works depending on context

Text in Callouts: Black (standard) #333333

® Callouts with numbers: Tangerine FF9900 (Currently | like the Snagit default of using circles since they can be placed anywhere

and circles reinforce the wavy look.)

Screen Resolution (or getting the best screenshot possible)

Assume that our audience is reading our documentation on a laptop. So, when taking a screenshot, it makes sense to create it from a laptop
screen to ensure readers will not have to scroll to see it in its entirety.


https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster#Thiokol-NASA_conference_call
http://resizemybrowser.com/
http://www.color-hex.com/color/333333
http://www.color-hex.com/color/c7c7c7

Apple Retina display

Does Apple Retina display matter? Docker writers are using MacBooks with Retina display which Apple defines as screens that have a higher
pixel density than their previous models. The goal of Retina displays is to make the display of text and images extremely crisp, so pixels are
not visible to the naked eye. All 15-Inch Retina Display MacBook Pro models have a 15.4" color display with 2880x1800 native resolution at 2
20 ppi and all 13-Inch Retina Display MacBook Pro models (A1425, A1502) have a 13.3" color display with 2560x1600 native resolution at 22
7 ppi. Since Docker writers are using MacBooks, let's assume that all of us are using Retina display. This means that the resolution will be
higher than non retina and might appear smaller if viewed on an older laptop that does not have this feature. The docs have been tested on a
newer HP laptop and there was no discernible difference in viewing screenshots.

Screenshots

After gathering comments based on samples, this style is the winner:

I g

Storaj

Set up your storage witha | @ Manual form YAML file

Manual form

Storage backend °
®
s Filesystem | @ s3 Azure swift

Selecting a storage
backend displays your
selected storage choices
that are particular to that
storage option.

S3 settings

Root directory ©

AWS region name 3 bucket name ©

AWS access key © /

/

AWS secret key ©

Notice the thin gray border on three sides, and the wave on the bottom which mimics the wave at the end of our doc pages and reinforces
that design element. People liked this look best as they preferred a minimal border with no distractions to the doc or screenshot. They
understood that the edges of the screenshot were cut off and felt they didn't need an edge such as a tear to let them know this. Notice the
various callouts: arrow, callouts, and numbers. They appear best with a slight shadow which adds weight and makes it appear that the
elements are on top of the doc, and not a part of it. If you are going to use multiple elements, it also makes sense to create them using the
same color.

Use Snagit to achieve this look.

® The Effects Border is gray78 #c7c7c7 and size (thickness) is 2pts.
® The Effects Edges is Wave at size 5 pts only on the bottom.
® You can save your settings as a style to quickly apply them.

Other considerations:

® First resize your screen so that while there is still white space, it is minimized without the screen looking weird.

® |Leave enough space for the docker logo on the left.

® When editing your screenshot, first crop out non-essential information such as your bookmarks and URL.

* No need to take a large screen shot to illustrate your point. It's better to have additional screenshots or use the torn page tool.

® After applying the border effects, think of using other tools such as arrows or callouts with text to emphasize your point. To keep in
the style of the screenshot, use arrows/callouts in a contrasting color such as red or orange and minimal borders as make sense to
the screenshot. Shadows can be optional depending on what else is in the screenshot.

® |f you are cropping a screenshot on all four sides, ensure that there is some context so users understand what you are trying to
show.

Graphics or charts

It doesn't matter which tool you use, it can be Snagit or Confluence's Gliffy. If you choose Gliffy, here's the documentation to get you
started: https://www.gliffy.com/user-manual/?productld=1. You can also type in the bracket "[" while in edit mode to bring up a list.

When creating graphics, the current preference is to make your graphics:

® Borderless, as it's less distracting.


http://www.color-hex.com/color/c7c7c7
https://www.gliffy.com/user-manual/?productId=1

In "soft" colors that compliment the Ul when possible.

With text, when it's used in a sans serif font for easy reading.

Use stronger (bolder) colors to draw a readers eye to a specific area.
Ensure to label your parts.

Use a legend when there are many parts.

Here is an example:
signed. It is the responsibility of the image publisher to decide if an image

tag is signed or not. In this representation, some image tags are signed,
others are not:

A sowm

X
Publishers can choose to sign a specific tag or not. As a result, the content
of an unsigned tag and that of a signed tag with the same name may not

| have included the text in this example to show you the actual size of the graphic.

Work to be done
® Address websafe colors - IN PROGRESS

® Include info for cutouts, callouts, and numbered bullets - ' IN PROGRESS

® guidelines for legends
® definitive font guidelines for text?
® match new doc Ul for branding purposes

Other Books, Blogs, and Bibliostuff

It is really smart to have a subscription to Safari Books Online. Save a tree and invest in yourself at the same time.

Really good books to have (add your own)

Fast Reference Information design Best book on writing

jnimalist
u Manual



https://www.safaribooksonline.com/

The Handbook of Technical How to Make Sense of Any Mess: The Sense of Style: The Thinking Minimalism Beyond the Nurnberg

Writing Information Architecture for Person's Guide to Writing in the 21st Funnel (Technical Communication,
by Gerald J. Alred et al. Everybody Century Multimedia, and Information Systems)
Link: http://amzn.com/14576755 by Abby Covert
28 Link: http://amzn.com/1500615994 by Steven Pinker by John M. Carroll

Link: http://amzn.com/0143127799 Link: http://amzn.com/026203249X

Other resources blogs and such

http://worrydream.com/
http://alistapart.com/
https://m.signalvnoise.com/
http://99u.com/
http://www.measuringu.com/

Tips, Tricks, and Tools

Convert Markdown to PDF

® Grip Tool

Grip Tool

One quick way to print Markdown page in a nice PDF is a tool called grip. It is super fast and captures images well.

Work with docs continuous integration (Cl) tests

To retest a failed documentation build:

Comment on the PR, and say "test this please".
There is a Jenkins plugin that sees that comment and retests your build, and then updates the Jenkins build status. See:https://wiki.jenkins-ci.org/

display/JENKINS/GitHub+pull+request+builder+plugin

Jenkins password for private repositories

Username Password

docs-team cDaxUBLGuLm8hjAJ

DOC Strategy Projects

® |mprove documentation usability
® Revise documentation release process
® Validate documentation files on commit

Improve documentation usability

Our current documentation skin was derived from the www.docker.com site as part of a push for Dockercon. It didn't go through the design
iteration we wanted it to. This project is designed to address that issue among others. In particular, the goals of this project are to:

Have a full design iteration on the docs skin

Support product-specific layouts

Improve the fonts and general layout of content

Ensure support multiple media formats (Computer, phone, tablet)
Ensure the site is usability tested


http://amzn.com/1457675528
http://amzn.com/1457675528
http://amzn.com/1500615994
http://amzn.com/0143127799
http://amzn.com/026203249X
http://worrydream.com/
http://alistapart.com/
https://m.signalvnoise.com/
http://99u.com/
http://www.measuringu.com/
https://github.com/joeyespo/grip
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
http://www.docker.com

Tasks addressing this situation

Key Summary T Created Updated Due Assignee Reporter P Status Resolution

No issues found

Revise documentation release process

Our current release process relies on releasing all the documentation at once to an S3 bucket. This is insufficient for the number of projects and
the frequency of their release.

DOCS-237 - Automated Documentation publishing
This project is being tracked in | TODO

The release Timeline is set by Core Release 1.10

docs.docker.com User Stories

One of strategic goal of the documentation team is to improve the

documentation release process. We want to support release more

frequently and at a more granular level. We have two initiatives in

place already to support and prepare for this, the Validate A user story is a tool used in Agile software development to capture a
documentation files on commit and Improve documentation usability. z‘;i?_"sl;:if” gfe:csrﬁ)fg‘s’i;‘:f;a‘:gt‘;:ra; ﬁ:tdt:‘:e&gﬁzzm"a’:- T/:‘iser
Given the number of projects and the variety of products, we want atory hel'gs o ats 3 sim;med doecription ot requiremem'y'

to make sure we have a good understanding of the requirements for

publishing or releasing the documentation. What is user story? - Definition from Whatls.com
searchsoftwarequality.techtarget.com/definition/user-story

PURPOSE: Collect user stories related to constructing
documentation content, building the content locally, and/or
publishing documentation.

Feedback

GOALS: The following

® Build a list of requirements for Docker's documentation
release process.

® Add to or expand requirements of other strategic projects if
necessary

Open Source Documentation Contributor
v Click for a user description...

An open source contributor, often a first time contributor. Likely to be unfamiliar with or new to Docker.

| want to see a change | made published to docs.docker.com within a day of when it is merged
| want to use an editor | am familiar with to write documentation.

| don't want to spend a lot of time learning a new tool so | can write documentation.

| don't want to create a new login to create documentation.

| want to write plain GitHub markdown so that | can use GiHub docs like a web

| want to get may changes into a Docker repository with a pull request

| want to build the documentation on my machine so | can test what | write.

| want to be able to do all the docs processes on my Windows machine.

A JAS A NAS AT WA WAS WAS WA

| want to be able to do all the docs process on my Mac.

Docker Technical Writer
v Click for a user description...

An employee or contractor to Docker. Experienced writing documentation for software companies. Used to an automated authoring
environment — the equivalent of a developer's IDE.


https://docker.atlassian.net/browse/DOCS-237?src=confmacro
https://docker.atlassian.net/wiki/display/PROJECTS/Core+Release+1.10
http://docs.docker.com
https://docker.atlassian.net/secure/IssueNavigator.jspa?reset=true&jqlQuery=filter+%3D+docs-redesign+&src=confmacro

N

| want to be sure my changes don't break the documentation build

| want a global variable that | can put in which stands for the current release version. For example, if | am writing a file in the
compose project, | should be able to put in this variable. Then, at build time, the build system should automatically replace this
variable for me to the latest version.

| should be able to define my own global variables within a project.
| should be able to define global variables in one project and use them in another.

| should be able to use a global variable any format that the authoring platform supports. For example, | might want to use a global
variable in a code example.

| want to rename or move a file in a directory structure and redirect the old file redirect.

I want to be able to run a local copy of the docs server and see my changes reflected locally by refreshing the page (must work on
OSX/Windows)

I want to be able to write some documentation source in one file and include it into another documentation source file (includes). I'd
like to do this within my project or across projects.

| want to be able to be able to define a set of conditions that | can use in the source files (conditional text). I'll use these conditions to
specify under what conditions to publish different parts of the source file.

Docker Engineer or Engineering Team Member

~ Click for a user description...

An employee or contractor to Docker. Doesn't have a lot of time to learn the ins and out of Markdown. Unfamiliar with Hugo static file
generator. Inexperienced writing docs for enterprise software. Unfamiliar with an automated authoring environment.

A5 S ES ES CE S S JES WS

| want to be able to publish our product documentation

| want to know that the latest documentation is correct - or at least know when code changes have affected examples.

| want to be able to include the output of a command (ex: "docker-compose --help’) in the docs in an automated fashion

| want to be able to generate APl documentation for display on docs.docker.com

| want the man pages and command line documentation to be kept in sync, preferably by coming from the same source files

| want man pages to be an automatic part of all projects with a cmdline

| want to be able to review documentation changes the same way | review code (github workflow)

| want our docs tools to play well with existing doc standards (godoc, github) and to not push breaking requirements on code (golint)

| want to be able to ship docs for the correct version of my product with the product itself

docs.docker.com Reader
~ Click for a user description...

Anyone reading the documentation. This person is trying to answer a question or solve a problem. Quickly finding information is
important. This person also wants metadata about the documentation to answer questions like "Am | reading the right thing".

AL RES ES RS

A5 RS RES A S EE e

| want to be able to search the documentation from a search bar in the documentation site
| should be able to tell what version of the product the documentation | am reading is written for.
| want to be able to tell the last time a page was edited

| want to be able to easily tell someone about, annotation or update existing pages, without needing to login or register for an
account, learn git, or deal with the strange signing process.

| want to look at content from older releases of a product.

| want to see quickly what's new in the current release (or see in which release something was added)

| want to see documentation for just the product I'm using (e.g. only docker-compose, swarm, engine, docker-machine)
| want to be able to download an offline copy of the documentation (in epub, PDF format)

| want to be able to read the documentation on a website

| want code examples to be better readable, without scrolling

| want to be able to copy / paste examples

Documentation Release Engineer



~ Click for a user description...

This person is responsible for building the tools for publishing the documentation and also for publishing the documentation.

| want to publish a new version for just a single product

| want to publish an update to a single page in an existing version

| want to archive an existing version of the product

| want to generate PDF of a set of product documentation

| should be able to rollback to a particular version of the documentation for any product.
| should be able to rollback to a particular version of a page.

| want to be able to authorize users to publish documentation for a project or as a whole

RS AT AT MRS AN BAS RS

| want to be able to lock users from publishing per project or as a whole

Technical Documentation Manager/Docker Manager
~ Click for a user description...

This person is responsible for smooth operation and delivery of the documentation set. This person wants data about the
documentation including how it was delivered and how it is being used.

Keep an audit log of what was published, who published it, and when

v

+ Google Analytics should be imbedded in each document source page

+ | want to be able to provide writers and contributors with documentation on how to create source content
v

| want to be able to provide user with instructions on how to publish

Documentation Release Tooling Requirements

Target release 1.10

Epic DOCS-237 - Automated Documentation publishing
TODO

Document status DRAFT

Document owner Mary Anthony
Designer
Developers Sven Dowideit

QA

Goals

® Support multi-architecture documentation
® Support per-product release cycles

Background and strategic fit

We expect to provide ...tBD

Assumptions


https://docker.atlassian.net/browse/DOCS-237?src=confmacro
https://docker.atlassian.net/wiki/display/~mary
https://docker.atlassian.net/wiki/display/~SvenDowideit

Requirements
#  Title

1 GitHub
Support

2  Changes
reflected on
site

3  Validation
support

4 Global Variable

5  Authoring
Environment

6 Local Builds

7 Redirect
support

User Story

® | want to write plain GitHub markdown so that | can use GiHub
docs like a web

® | want our docs tools to play well with existing doc standards
(godoc, github) and to not push breaking requirements on code
(golint)

® | want to see a change | made published to docs.docker.com withi
n a day of when it is merged because | like to see the impact of my
contribution. When | do, | feel like | made a difference and it
inspires me to contribute more.

¢ | the documentation build to report errors present in my source
that break the documentation build.

For instance links that don't resolve, markdown that isn't
formatted properly, images that are missing, and other things.
An automated provides confirmation of a manual check and also
allows me as a writer to work more efficiently.

I should be able to define my own global variables within a project
and use them in place of key terms.

Good candidates for global variables are product or feature
names, operating system, product versions, and current year.
Using Global variables allows me to quickly upgrade a document
for a particular product version or operating system. For
example, if | am writing a file in the compose project, | should be
able to put in this variable. Then, at build time, the build system
should automatically replace this variable for me to the latest
version.

I should be able to define docker-wide variables and use them
across projects.

I should be able to use a global variable any format that the
authoring platform supports.

For example, | might want to use a global variable in a code
example.

® | want to use an editor | am familiar with to write documentation.

® | don't want to spend a lot of time learning a new tool so | can write
documentation.

® | don't want to create a new login to create documentation.

| want to get may changes into a Docker repository with a pull

request

| want to be able to review documentation changes the same way |

review code (github workflow)

® | want to build the documentation on my machine so | can test
what | write and make sure it presents well.

| want to build the documentation on my machine so | can test
what | write.

I want to be able to do all the docs processes on my Windows
machine.

| want to be able to do all the docs process on my Mac.

® | want to rename or move a file in a directory structure and create
a redirect from the old to the new file. This is good because it does
not break Docker's old SEO.

Importance

Notes

Feature implementations should avoid breaking linking
between pages in a GitHub project

Feature implementations should support display of images
within a GitHub project

Feature implementations should not surface into the GitHub
visual representation of a page

This requires a better cherry pick feature; right now
cherry-picks are manual

Since the cherry pick feature increases the risk of bad
changes being pushed, DEPENDS ON a rollback function

Cl Validation should run for local builds pull request and fail
on error

Cl Validation should run for each pull request and fail on
error

This would be a key-value pair

The variable should be usable in any kind of paragraph
format (code, heading) or font format (bold, italics,
preformatted)

We should support cross-project global variables; maybe by
means of a build variables file

We shouldn't require a specialized authoring environment;
currently users can contribute with a text editor and an
Docker installation alone

We shouldn't require special pull requests for documentation
contributors; we should leverage the current open source
process for pull requests

Users may be writing on Mac OSX, Windows, and Linux
As we expand to multi-architecture there may be more
platforms
Currently we have this situation:
® Local builds are working as unit tests. And running
Hugo checks which is Sven's patch. he is going to
update that to be off the latest release

Need a JIRA for this

® |Integration tests are happening on the PR checkin to
GitHub these checks include:

® Markdown linter is being run

® Linkchecker is not running; still in development;
Sven runs it on the stage build running from
checkins. Sven is working on this and will let us
know. This is definitely finding this on an actual
S3. When you do a Hugo server what you get is
only marginally related to what you get if you do
to Hugo server — Hugo serve is not showing what
happens on an actually deployed server. (This is
fixed by moving yo using nginx - as the local
build webserver is identical to the stage&prod
one)

Need a JIRA to track for the Linkcheck

Within our own systems we should not use redirects.
Instead, we should fix our links to point to the new file.
Links to a file that has been redirected should provide a
warning in the build system.

Check redirects from within Compose. / Maybe start
release from AWS instance rather than a virtualbox
machine


http://docs.docker.com/

10

1

12

13

14

15

16

17

18

19

20

21

Live refresh

Reuse/Includes

Conditional
Publishing

Version

Metadata

Page
Comments

Archive
support

Change control

Search

Code
examples

Generate
command docs

Generate API
docs

Man pages

Publish

| want to be able to run a local copy of the docs server and see my
changes reflected locally by refreshing the page (must work on
OSX/Windows)

| want to write a common text and reuse or include it in multiple
other documentation source files.

| want to be able to write content that contains sections that are
displayed or hidden depending on certain conditions. define a set
of conditions that | can use in the source files (conditional text). I'l
use these conditions to specify under what conditions to publish
different parts of the source file.

| want to be able to ship docs for the correct version of my product
with the product itself

I should be able to tell what version of the product the
documentation | am reading is written for.

| want to be able to under the schema of Docker's doc URI

I want to be able to tell the last time a page was edited/changed

| want to be able to easily tell someone about, annotation or
update existing pages, without needing to login or register for an
account, learn git, or deal with the strange signing process.

I want to look at content from older releases of a product.

| want to see quickly what's new in the current release (or see in
which release something was added)

| want to be able to search the documentation from a search bar in
the documentation site

® | want code examples to be better readable, without scrolling

| want to be able to copy / paste examples

| want to know that the latest documentation is correct - or at least
know when code changes have affected examples.

I want to be able to include the output of a command (ex:
“docker-compose --help’) in the docs in an automated fashion

I want the man pages and command line documentation to be kept
in sync, preferably by coming from the same source files

| want to be able to generate APl documentation for display on doc
s.docker.com

| want man pages to be an automatic part of all projects with a
cmdline

I want the man pages and command line documentation to be kept
in sync, preferably by coming from the same source files

| want to publish a new version for just a single product

| want to publish an update to a single page into the latest
published version

| want to publish an update to one or more pages in an older,
archived version of the documenation

| want to archive an existing version of the product

® | should be able to rollback to a particular version of the

documentation for any product.

® | should be able to rollback to a particular version of a page.
® Keep an audit log of what was published, who published it, and

when

This is the Hugo watch function. Works in the Linux case
fine. Does not work on Mac or Linux where the
DOCKER_HOST is a vm

Maybe new Docker Volumes allows this to work

Examples in other products
® Drupal
* Framemaker
® Madcap Flare

The documentation for a particular product should display
the version of the product the documentation is assoicated
with on the page (either page layout or URL is fine)

+ We need to take back up the URL Discussion for

Documentation Site URI Layout

DOCS-251 - fetch_content.py needs
to get product-version from product repo
TODO
- get the prod-version info from the prod repo and put into
build_info.json

Needs a UX

DOCS-252 - fetch&store each page's
metadata | TODO

This one is directed at having a facility in the doc site itself
for presenting archived versions

DOCS-248 - Solution for archived
docs ' TODO

needs a UX

New in the product
New in the documentation
Interim solution maybe to use the GiHub repo

Google search is in the new layout design

Verify how it looks with multiple products /version

DTR is already there
Docker Python APl is already there

For 1.10 release the intention that "I" is Mary or Sven
see Publishing workflow


https://www.drupal.org/project/conditional_text
http://help.adobe.com/en_US/FrameMaker/9.0/Using/WSF778A159-48A7-4f26-B04E-79509DDB38E8.html
http://help.madcapsoftware.com/d2h3/Content/Condition_Tags/D2H/About_Conditions_D2H.htm
https://docker.atlassian.net/wiki/display/DOCSTEAM/Discussion+for+Documentation+Site+URI+Layout
https://docker.atlassian.net/wiki/display/DOCSTEAM/Discussion+for+Documentation+Site+URI+Layout
https://docker.atlassian.net/browse/DOCS-251?src=confmacro
https://docker.atlassian.net/browse/DOCS-252?src=confmacro
https://docker.atlassian.net/browse/DOCS-248?src=confmacro
http://docs.docker.com
http://docs.docker.com
https://docker.atlassian.net/wiki/display/DOCSTEAM/Publishing+workflow

22  Authorize ® | want to be able to publish our product documentation * Requires that we have 23 Recovery/Rollback in place
publishers ® | want to be able to lock users from publishing per project or as a
whole
® | want to be able to lock users from publishing per project or as a
whole

I should be able to rollback to a particular version of the May or may not come out by 11
documentation for any product. see Publishing workflow (make a PR to the docker/docs-html
I should be able to rollback to a particular version of a page. repo, validate and merge to GO-LIVE)

23  Recovery

24 Output/Display ® | want to be able to read the documentation on a website ® The new layout of the documentation is product-specific
| want to see documentation for just the product I'm using (e.g.
only docker-compose, swarm, engine, docker-machine)

25 PDF support | want to be able to download an offline copy of the documentation
(in epub, PDF format)

| want to generate PDF of a set of product documentation

26 Audit trail ® Keep an audit log of what was published, who published it, and ® We need that before we can do the publish
when ® Use the commit history and Pull Request history of the dock
er/docs.docker.com, docker/docs-sources and
docker/docs-html repositories for test/stage, and repository
tagging for each live site
27  Analytics ® Google Analytics should be imbedded in each document source * Supported in current version of the product
page

28 Support | want to be able to provide writers and contributors with
documentation on how to create source content
I want to be able to provide user with instructions on how to

publish

User interaction and design

Questions
Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

Not Doing

| want to use an editor | am familiar with to write documentation.

| don't want to spend a lot of time learning a new tool so | can write documentation.
| don't want to create a new login to create documentation.

| want to get may changes into a Docker repository with a pull request

Validate documentation files on commit

Traditional authoring environments validate a file when the file is saved. Depending on the environment, the validation may be very strict (DITA)
or basic (Framemaker, Drupal, Confluence). What they have in common is they have features that automatically validate the file content. The
analogy is to a compilation with code. Validation automates many things for a writer.

Checks the file contain valid markup

Automatically numbers procedures and headings

Ensures the cross-references (links between files a company's documentation) in the file resolve
Ensures links to external resources resolve

Checks the markup logical (H1 is only followed by H2)

Includes exist and resolve in the documentation

These kinds of automated validation may be done while a user writers, on a documentation save, or when a documentation set is generated.

An editor + Markdown doesn't automate any documentation validation. Instead, it relies on a human being to manually and personally validate.
As a result, the checks are highly error prone.

Tasks addressing this situation

Develop checks that ensure markdown files are validated when users check them into a repository.


https://docker.atlassian.net/wiki/display/DOCSTEAM/Publishing+workflow

Key Summary T Created Updated Due Assignee

DOCS-228 add a junit.xml file Nov 23, Nov 24, Sven
output to 2015 2015 Dowideit
markdownlint,
linkchecker and
hugo

DOCS-186 defuse hard-coded Sep 23, Jan 20, Oct23, Sven
links to 2015 2016 2015 Dowideit
docs.docker.com

2 issues

Doc Build, Validation, and Release

Build the Documentation

Branching and products

Releasing Docs: lllustrated and explained

Documentation pull request checkers (Validation)
Adding Documentation PR validation to a GitHub repository

Releasing Docs: lllustrated and explained

This page explains the components of and process for releasing documentation both for an official release and as updates to the existing

docs.docker.com site.

Understand what is involved

Reporter

Sven
Dowideit

Mary
Anthony

P Status Resolution
®@ IN PROGRESS Unresolved
®@ SELECTED Unresolved
FOR
DEVELOPMENT

The documentation source files are co-located with the documentation product's code source files. This has an advantage:

® When new features are added to a product the documentation is also added; if done in a single PR it can be reverted if necessary in

a single PR

® Feature code and documentation are reviewed simultaneously in a single rather than duplicated effort

® Easier for code contributors to find the documentation related to a product they are working on

There is a tradeoff of course. Some disadvantages are:

® Documentation for new features can lag or require updates after a release candidate(RC) branch is cut.
® Small documentation changes require PRs that add to a product's PR review workload

* Documentation management must manage documentation across multiple project repositories

List of projects that feed docs.docker.com:

Repository

1 https://github.com/docker/docker

2  https://github.com/docker/distribution
3  https://github.com/docker/swarm

4 https://github.com/docker/machine

5  https://github.com/docker/compose
6  https://github.com/docker/notary

7  https://github.com/docker/dhe-deploy

Description
Docker Engine. Public.

Docker CS. Commercial

Docker Registry. Public.
Docker Swarm. Public.
Docker Machine. Public.
Docker Compose. Public.
Notary. (TBD)

Content only for DTR. Private.


https://docker.atlassian.net/wiki/display/DOCSTEAM/Build+the+Documentation
https://docker.atlassian.net/wiki/pages/viewpage.action?pageId=42436402
https://docker.atlassian.net/wiki/display/DOCSTEAM/Adding+Documentation+PR+validation+to+a+GitHub+repository
https://docker.atlassian.net/wiki/display/DOCSTEAM/Branching+and+products
https://www.wordnik.com/words/co-locate
https://github.com/docker/docker
https://github.com/docker/distribution
https://github.com/docker/swarm
https://github.com/docker/machine
https://github.com/docker/compose
https://github.com/docker/notary
https://github.com/docker/dhe-deploy
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-228?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/browse/DOCS-186?src=confmacro
https://docker.atlassian.net/secure/IssueNavigator.jspa?reset=true&jqlQuery=filter%3Ddocs-validate+&src=confmacro

8  https://github.com/docker/hub2-demo

9  https://github.com/kitematic/kitematic

10

11

https://github.com/docker/opensource

https://github.com/docker/tutorials

Hub Private docs
Kitematic. Public
Open source

Getting startet

Documentation and the release process

*

Q1 Q2

H *

Branch

RC H
cnerr; pick.
DOCS change

-

*

dockerlproject master

release (RC-1, RC2RC3)  cherry pick
DOCS change

docs.docker.com -- master

docs-base -~ master

Y New code feature and/or documentation

New Product Release

Purpose: Publish new product documentation and updates to
existing feature documentation.

1.

2.

H W

Repository

https://github.com/docker/docs-base

As features are added, code and doc changes add into a
product's docker/project master branch.

When the engineering team is ready, the cut an RC branch
from master that includes code and documentation.

. Engineer creates a release branch
. Engineer updates the docs branch from release.
. The documentation team publishes staging.docs.docker.c

om.

. Release watchers verify the content on the staging site.
. The documentation team publishes docs.docker.com site.

Description

Contains

PRODUCT RELEASE

*

cherry pick
DOCS change

i
'
'
1
1
1
i
'
'
1
i
1
1
1
1
1
1
1

cherry
DOCS change

v v

Q3

pick all code repos

DOCS UPDATE

Staging
Verification

g
?
&

Between Release Documentation Updates

Purpose: Publish updates to existing feature documentation NOT a
ny new feature documentation.

1.

2.

(2]

As new features are added, code and doc added
into a product's docker/project master branch

As documentation is updated for existing features
the change is added to a product's docker/project
master branch.

. At this point, master contains documentation for ex

isting and new features co-mingled.

. Writer copies a documentation update for existing

feature from master into the docs branch with a
cherry pick

. Build and pushed to stage.docs.docker.com
. Interested party verifies staging
. The documentation team publishes docs.docker.c

om site.

® The documentation theme (look and feel)
® The documentation splash page
® The release-notes page

https://github.com/docker/docs.docker.com = Contains the build scripts for building and publishing documentation


https://github.com/docker/hub2-demo
https://github.com/kitematic/kitematic
https://github.com/docker/opensource
https://github.com/docker/tutorials
http://docs.docker.com
http://docs.docker.com
https://github.com/docker/docs-base
https://github.com/docker/docs.docker.com

	Documentation Team
	REPORT an Issue or Problem
	What is Docker?
	You meant to say Docker Engine right?
	Images, Containers, and Docker oh my!
	Docker Ecosystem: Beyond the Engine

	Use Git and GitHub
	Set up Git on your Mac
	Git/GitHub Glossary and Illustrated Reference
	Enable a virtual machine
	Create a repository clone on your local machine
	Daily update and rebase the master branch on your local repository
	Create and checkout a new feature branch
	Checkout an existing feature branch
	Verify your work with the make docs command
	How to check your work after a make docs
	Add a new file or folder to Git tracking
	Push changes to a fork
	Rebase, squash, and push to your fork
	Fixing merge conflicts while rebasing
	Create a pull request
	Participate a pull request review
	Test or carry another user's code branch
	Understand when and how to merge a pull request
	Backing out changes you already pushed to GitHub
	How to cherry-pick a commit for release
	Git Going Cheesheet
	FAQ about writers and Git
	Troubleshooting Git
	Correct a Permission Denied (publickey) error
	Correct a TLS-enabled daemon error

	Checkout a remote branch from GitHub

	Guidance and Style
	Page construction and format
	Style Guide
	Terminology
	Guidelines for screenshots and illustrations
	Other Books, Blogs, and Bibliostuff

	Tips, Tricks, and Tools
	Convert Markdown to PDF
	Work with docs continuous integration (CI) tests

	DOC Strategy Projects
	Improve documentation usability
	Revise documentation release process
	docs.docker.com User Stories
	Documentation Release Tooling Requirements

	Validate documentation files on commit

	Doc Build, Validation, and Release
	Releasing Docs: Illustrated and explained



